JHEPGC  Vol.1 No.2 , October 2015
5D World-Universe Model. Multicomponent Dark Matter
ABSTRACT
5D World-Universe Model (WUM) is based on the decisive role of the Medium of the World com-posed of massive particles: protons, electrons, photons, neutrinos, and Dark Matter Particles (DMP). The model forecasts the masses of DMP, discusses the possibility of all macroobject cores consisting of DMP (galaxy clusters, galaxies, star clusters, extrasolar systems, and planets), and explains the diffuse cosmic gamma-ray background radiation as the sum of contributions of multicomponent dark matter annihilation. The signatures of DMP annihilation with expected masses of 1.3 TeV, 9.6 GeV, 70 MeV, 340 keV, and 3.7 keV, are found in spectra of the diffuse gamma-ray background and the emission of various macroobjects in the World. The correlation between different emission lines in spectra of macroobjects is connected to their structure, which depends on the composition of the cores and surrounding shells made up of DMP. Consequently, the diversity of Very High Energy (VHE) gamma-ray sources in the World has a clear explanation.

Cite this paper
Netchitailo, V. (2015) 5D World-Universe Model. Multicomponent Dark Matter. Journal of High Energy Physics, Gravitation and Cosmology, 1, 55-71. doi: 10.4236/jhepgc.2015.12006.
References
[1]   Netchitailo, V.S. (2015) 5D World-Universe Model. Space-Time-Energy. Journal of High Energy Physics, Gravitation and Cosmology, 1, 25. http://dx.doi.org/10.4236/jhepgc.2015.11003

[2]   Arrenberg, S., et al. (2013) Complementarity of Dark Matter Experiments. http://www-public.slac.stanford.edu/snowmass2013/docs/CosmicFrontier/Complementarity-27.pdf

[3]   Heeck, J. and Zhang, H. (2013) Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos. http://arxiv.org/abs/1211.0538

[4]   Aoki, M., et al. (2012) Multi-Component Dark Matter Systems and Their Observation Prospects. http://arxiv.org/abs/1207.3318

[5]   Kusenko, A., Loewenstein, M. and Yanagida, T. (2013) Moduli Dark Matter and the Search for Its Decay Line Using Suzaku X-Ray Telescope. Physical Review D, 87, Article ID: 043508. http://dx.doi.org/10.1103/physrevd.87.043508

[6]   Feldman, D., Liu, Z., Nath, P. and Peim, G. (2010) Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions. http://arxiv.org/abs/1004.0649

[7]   Feng, J.L. (2010) Dark Matter Candidates from Particle Physics and Methods of Detection. http://arxiv.org/abs/1003.0904

[8]   Zurek, K.M. (2009) Multi-Component Dark Matter. http://arxiv.org/abs/0811.4429

[9]   Boehm, C., Fayet, P. and Silk, J. (2003) Light and Heavy Dark Matter Particles. http://arxiv.org/abs/hep-ph/0311143

[10]   Feng, W.Z., Mazumdar, A. and Nath, P. (2013) Baryogenesis from Dark Matter. http://arxiv.org/abs/1302.0012

[11]   D’Souza, I.A. and Kalman, C.S. (1992) Preons: Models of Leptons, Quarks and Gauge Bosons as Composite Objects. World Scientific, Singapore.

[12]   NASA’s Planck Project Office (2013) Planck Mission Brings Universe into Sharp Focus. https://www.nasa.gov/mission_pages/planck/news/planck20130321.html#.VZ4k5_lViko

[13]   Feng, W.Z., Nath, P. and Peim, G. (2012) Cosmic Coincidence and Asymmetric Dark Matter in a Stueckelberg Extension. http://arxiv.org/abs/1204.5752

[14]   Narain, G., Schaffner-Bielich, J. and Mishustin, I.N. (2006) Compact Stars Made of Fermionic Dark Matter. http://arxiv.org/abs/astro-ph/0605724

[15]   Corda, C., Cuesta, H.J.M. and Gomez, R.L. (2012) High-Energy Scalarons in R2 Gravity as a Model for Dark Matter in Galaxies. Astroparticle Physics, 35, 362-370. http://dx.doi.org/10.1016/j.astropartphys.2011.08.009

[16]   Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. http://dx.doi.org/10.1142/s0218271809015904

[17]   Woolfson, M.M. (1984) The Evolution of Rotation in the Early History of the Solar System. Philosophical Transactions of the Royal Society A, 313, 5-18. http://dx.doi.org/10.1098/rsta.1984.0078

[18]   García, R.A., Turck-Chieze, S., Jimenez-Reyes, S.J., et al. (2007) Tracking Solar Gravity Modes: The Dynamics of the Solar Core. Science, 316, 1591-1593. http://dx.doi.org/10.1126/science.1140598

[19]   Zhang, J., Song, X.D., Li, Y.C., et al. (2005) Inner Core Differential Motion Confirmed by Earthquake Waveform Doublets. Science, 309, 1357-1360. http://dx.doi.org/10.1126/science.1113193

[20]   Livermore, P.W., Hollerbach, R. and Jackson, A. (2013) Electromagnetically Driven Westward Drift and Inner-Core Superrotation in Earth’s Core. Proceedings of the National Academy of Sciences, 110, 15914-15918. http://dx.doi.org/10.1073/pnas.1307825110

[21]   Baryshev, Y.V. (2008) Field Fractal Cosmological Model as an Example of Practical Cosmology Approach. http://arxiv.org/abs/0810.0162

[22]   Agle, D.C. and Brown, D. (2012) Data from NASA’s Voyager 1 Point to Interstellar Future. http://www.nasa.gov/mission_pages/voyager/voyager20120614.html

[23]   Altmannshofer, W., Buras, A.J., Straub, D.M., et al. (2009) New Strategies for New Physics Search in Decays. http://arxiv.org/pdf/0902.0160.pdf

[24]   Del Amo Sanchez, P., et al., The BABAR Collaboration (2011) Search for the Rare Decay . http://arxiv.org/pdf/1009.1529.pdf

[25]   Strigari, L.E. (2012) Galactic Searches for Dark Matter. http://arxiv.org/abs/1211.7090

[26]   Bechtol, K. (2011) The Extragalactic Gamma-Ray Background. A Census of High Energy Phenomena in the Universe. http://astro.fnal.gov/events/Seminars/Slides/Bechtol%20120611.pdf

[27]   Buckley, J., Byrum, K., Dingus, B., et al. (2008) The Status and Future of Ground-Based TeV Gamma-Ray Astronomy. A White Paper Prepared for the Division of Astrophysics of the American Physical Society. http://arxiv.org/abs/0810.0444

[28]   Jeltema, T. (2012) Observational Cosmology and Astroparticle Physics. http://physics.ucsc.edu/~joel/12Phys205/Feb6-Jeltema.pdf

[29]   Aharonian, F.A. (2004) Very High Energy Cosmic Gamma Radiation. A Crucial Window on the Extreme Universe. http://www.worldscientific.com/worldscibooks/10.1142/4657 http://dx.doi.org/10.1142/4657

[30]   Totani, T. (2009) The Cosmic Gamma-Ray Background Radiation. AGNs, and More? http://www-conf.kek.jp/past/HEAP09/ppt/1day/Totani_HEAP09.pdf

[31]   Johnson, R.P. and Mukherjee, R. (2009) GeV Telescopes: Results and Prospects for Fermi. New Journal of Physics, 11, Article ID: 055008. http://dx.doi.org/10.1088/1367-2630/11/5/055008

[32]   Giovannelli, F. and Sabau-Graziati, L. (2012) Multifrequency Behavior of High Energy Cosmic Sources. A Review. Memorie Della Societa Astronomica Italiana, 83, 17.

[33]   Essig, R., Kuflik, E., McDermott, S.D., et al. (2013) Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations. http://arxiv.org/abs/1309.4091

[34]   Porter, T.A., Johnson, R.P. and Graham, P.W. (2011) Dark Matter Searches with Astroparticle Data. http://arxiv.org/abs/1104.2836

[35]   Boehm, C., Hooper, D., Silk, J., et al. (2003) MeV Dark Matter: Has It Been Detected? http://arxiv.org/abs/astro-ph/0309686

[36]   Holder, J. (2012) TeV Gamma-Ray Astronomy: A Summary. http://arxiv.org/abs/1204.1267

[37]   Chaves, R.C.G., for the H.E.S.S. Collaboration (2009) Extending the H.E.S.S. Galactic Plane Survey. http://arxiv.org/abs/0907.0768

[38]   Tibolla, O., Chaves, R.C.G., de Jager, O., et al. (2009) New Unidentified H.E.S.S. Galactic Sources. http://arxiv.org/abs/0907.0574

[39]   Hoppe, S., de Ona-Wilhemi, E., Khélifi, B., et al. (2009) Detection of Very-High-Energy Gamma-Ray Emission from the Vicinity of PSR B1706-44 with H.E.S.S. http://arxiv.org/abs/0906.5574

[40]   Tam, P.H.T., Wagner, S.J., Tibolla, O., et al. (2009) A Search for VHE Counterparts of Galactic Fermi Bright Sources and MeV to TeV Spectral Characterization. http://arxiv.org/abs/0911.4333

[41]   Tibolla, O., Chaves, R.C.G., Domainko, W., et al. (2009) New Unidentified Galactic H.E.S.S. Sources. http://arxiv.org/abs/0912.3811

[42]   Tam, P.H.T., Wagner, S., Tibolla, O. and Chaves, R. (2010) A Search for VHE Counterparts of Galactic Fermi Sources. http://arxiv.org/abs/1001.2950

[43]   Aleksic, J., Ansoldi, S., Antonelli, L.A., et al. (2013) Optimized Dark Matter Searches in Deep Observations of Segue 1 with MAGIC. http://arxiv.org/abs/1312.1535

[44]   Moralejo, A. (2013) http://projects.ift.uam-csic.es/multidark/images/moralejoalcala.pdf.

[45]   Abramowski, A., Acero, F., Aharonian, F., et al. (2013) Search for Photon Line-Like Signatures from Dark Matter Annihilations with H.E.S.S. http://arxiv.org/abs/1301.1173

[46]   Jin, H.B., Wu, Y.L. and Zhou, Y.F. (2013) Implications of the First AMS-02 Measurement for Dark Matter Annihilation and Decay. http://arxiv.org/abs/1304.1997

[47]   Abdo, A.A., et al., Fermi/LAT Collaboration (2009) Measurement of the Cosmic Ray e+ + e- Spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope. http://arxiv.org/abs/0905.0025

[48]   Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., et al. (2011) The Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV. http://arxiv.org/abs/1103.2880

[49]   He, X.G. (2009) A Brief Review on Dark Matter Annihilation Explanation for e± Excesses in Cosmic Ray. http://arxiv.org/abs/0908.2908

[50]   Cholis, I. and Goodenough, L. (2010) Consequences of a Dark Disk for the Fermi and PAMELA Signals in Theories with a Sommerfeld Enhancement. http://arxiv.org/abs/1006.2089

[51]   Morselli, A. (2011) Indirect Detection of Dark Matter, Current Status and Recent Results. Progress in Particle and Nuclear Physics, 66, 208-215. http://dx.doi.org/10.1016/j.ppnp.2011.01.008

[52]   Abazajian, K.N. and Harding, J.P. (2011) Constraints on WIMP and Sommerfeld-Enhanced Dark Matter Annihilation from HESS Observations of the Galactic Center. http://arxiv.org/abs/1110.6151

[53]   Kawanaka, N., Ioka, K., Ohira, Y., et al. (2010) TeV Electron Spectrum for Probing Cosmic-Ray Escape from a Supernova Remnant. http://arxiv.org/abs/1009.1142

[54]   Aharonian, F.A., Akhperjanian, A.G., de Almeida, U.B., et al. (2008) Energy Spectrum of Cosmic-Ray Electrons at TeV Energies. Physical Review Letters, 101, Article ID: 261104. http://dx.doi.org/10.1103/PhysRevLett.101.261104

[55]   Ibarra, A., et al. (2010) Extragalactic Diffuse Gamma-Rays from Dark Matter Decay. http://calet.phys.lsu.edu/Science/DGR.php

[56]   Orr, M. and Krennrich, F. (2011) Constraining the Extragalactic Background Light in the Near-Mid IR with the Cherenkov Telescope Array (CTA). 32nd International Cosmic Ray Conference, Beijing. http://www.ihep.ac.cn/english/conference/icrc2011/paper/proc/v8/v8_1156.pdf

[57]   Orr, M., Krennrich, F. and Dwek, E. (2011) Strong New Constraints on the Extragalactic Background Light in the Near- to Mid-IR. http://arxiv.org/abs/1101.3498

[58]   Madhavan, A. (2013) The VHE γ-Ray Spectra of Several Hard-Spectrum Blazars from Long-Term Observations with the VERITAS Telescope Array. PhD Thesis, Iowa State University, Ames.

[59]   Torii, S., for the CALET Collaboration (2014) The CALorimetric Electron Telescope (CALET): A High Energy Cosmic-Ray Observatory on the International Space Station. http://www.crlab.wise.sci.waseda.ac.jp/eng/wp-content/uploads/downloads/2014/09/VHEPU2014-CALET_final.pdf

[60]   Papuccia, M. and Strumia, A. (2009) Robust Implications on Dark Matter from the First FERMI Sky Gamma Map. http://arxiv.org/abs/0912.0742

[61]   Hooper, D. (2012) The Empirical Case For 10 GeV Dark Matter. http://arxiv.org/abs/1201.1303

[62]   Hooper, D. and Goodenough, L. (2010) Dark Matter Annihilation in the Galactic Center as Seen by the Fermi Gamma Ray Space Telescope. http://arxiv.org/abs/1010.2752

[63]   Sreekumar, P., Bertsch, D.L., Dingus, B.L., et al. (1998) EGRET Observations of the Extragalactic Gamma Ray Emission. The Astrophysical Journal, 494, 523-534.

[64]   Abdo, A.A., et al. (1997) A Population of Gamma-Ray Emitting Globular Clusters Seen with the Fermi Large Area Telescope. http://arxiv.org/abs/1003.3588

[65]   Tam, P.H.T., Kong, A.K.H., Hui, C.Y., et al. (1997) Gamma-Ray Emission from Globular Clusters. http://arxiv.org/abs/1207.7267

[66]   Frandsen, M.T., Kahlhoefer, F., McCabe, C., et al. (2013) The Unbearable Lightness of Being: CDMS versus XENON. http://arxiv.org/abs/1304.6066

[67]   Hunter, S.D., Bertsch, D.L., Catelli, J.R., et al. (1997) EGRET Observations of the Diffuse Gamma-Ray Emission from the Galactic Plane. The Astrophysical Journal, 481, 205-240. http://dx.doi.org/10.1086/304012

[68]   Golubkov, Y.A. and Khlopov, M.Y. (2000) Antiprotons Annihilation in the Galaxy as a Source of Diffuse Gamma Background. http://arxiv.org/pdf/astro-ph/0005419.pdf

[69]   Wolfe, B., Melia, F., Crocker, R.M., et al. (2008) Neutrinos and Gamma Rays from Galaxy Clusters. http://arxiv.org/abs/0807.0794

[70]   Yamazaki, R., Kohri, K., Bamba, A., et al. (2006) TeV Gamma-Rays from Old Supernova Remnants. http://arxiv.org/pdf/astro-ph/0601704.pdf

[71]   Nakamori, T. (2012) Fermi Observations of Galactic Sources. www.heap.phys.waseda.ac.jp/cnf1203/Files/Oral/Nakamori.pdf

[72]   Agakishiev, G., Balanda, A., Belver, D., et al. (2013) Searching a Dark Photon with HADES. http://arxiv.org/abs/1311.0216

[73]   Merkel, H., Achenbach, P., Gayoso, C.A., et al., A1 Collaboration (2011) Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron. Physical Review Letters, 106, Article ID: 251802. http://dx.doi.org/10.1103/PhysRevLett.106.251802

[74]   Abrahamyan, S., Ahmed, Z., Allada, K., et al., APEX Collaboration (2011) Search for a New Gauge Boson in Electron-Nucleus Fixed-Target Scattering by the APEX Experiment. Physical Review Letters, 107, Article ID: 191804. http://dx.doi.org/10.1103/PhysRevLett.107.191804

[75]   Drees, R.M., Waltham, C., Bernasconi, T., et al., SINDRUM I Collaboration (1992) Measurement of the π0 Electromagnetic Transition form Factor. Physical Review D, 45, 1439-1447. http://dx.doi.org/10.1103/PhysRevD.45.1439

[76]   Adlarson, P., et al., WASA-at-COSY Collaboration (2013) Search for a Dark Photon in the π0→e+e-γ Decay. Physics Letters B, 726, 187-193. http://dx.doi.org/10.1016/j.physletb.2013.08.055

[77]   Babuski, D., Badoni, D., Balwierz-Pytko, I., et al., KLOE-2 Collaboration (2013) Limit on the Production of a Light Vector Gauge Boson in φ Meson Decays with the KLOE Detector. Physics Letters B, 720, 111-115. http://dx.doi.org/10.1016/j.physletb.2013.01.067

[78]   Rasera, Y., Teyssier, R., Sizun, P., et al. (2006) Soft Gamma-Ray Background and Light Dark Matter Annihilation. http://arxiv.org/pdf/astro-ph/0507707.pdf

[79]   Zdziarski, A.A. (1996) Contributions of AGNs and SNe Ia to the Cosmic X-Ray and Gamma-Ray Backgrounds. Monthly Notices of the Royal Astronomical Society, 281, L9-L13. http://dx.doi.org/10.1093/mnras/281.1.L9

[80]   Gruber, D.E., Matteson, J.L. and Peterson, L.E. (1999) The Spectrum of Diffuse Cosmic Hard X-Rays Measured with HEAO-1. http://arxiv.org/abs/astro-ph/9903492

[81]   Gorenstein, P., Giacconi, R. and Gursky, H. (1967) The Spectra of Several X-Ray Sources in Cygnus and Scorpio. The Astrophysical Journal, 150, L85. http://dx.doi.org/10.1086/180098

[82]   Safi-Harb, S. and Ogelman, H. (1997) ROSAT and ASCA Observations of W50 Associated with the Peculiar Source SS 433. The Astrophysical Journal, 483, 868-881. http://dx.doi.org/10.1086/304274

[83]   Itoh, T. (2007) Suzaku Studies of Time Variable X-Ray Spectra of Edge-On Active Galactic Nuclei. PhD Thesis, University of Tokyo, Tokyo. http://www.astro.isas.jaxa.jp/suzaku/bibliography/phd/titoh_dron_print080220.pdf

[84]   Bykov, A.M., Krassilchtchikov, A.M., Uvarov, Y.A., et al. (2009) Isolated X-Ray—Infrared Sources in the Region of Interaction of the Supernova Remnant IC 443 with a Molecular Cloud. http://arxiv.org/abs/0801.1255

[85]   Fukuoka, R., Koyama, K., Ryu, S.G., et al. (2008) Suzaku Observation Adjacent to the South End of the Radio Arc. http://arxiv.org/abs/0903.1906

[86]   Morretti, A., Vattakunnel, S., Tozzi, P., et al. (2012) Spectrum of the Unresolved Cosmic X-Ray Background: What Is Unresolved 50 Years after Its Discovery. http://arxiv.org/abs/1210.6377

 
 
Top