JMP  Vol.6 No.13 , October 2015
Shock Induced Symmetric Compression in a Spherical Target
ABSTRACT
Shock induced symmetric compression has been studied in a spherical target. The shock induced interfacial radius will shrink and would reach a minimum point during implosion situation. However, after implosion the plasma tries to expand in blow off/explosion situation and as a result the interfacial radius will increase. Effects of plasma parameters like density and temperature have been studied numerically. It is seen that the density increases many times due to the mass conservation in imploding situation of a compressible shell like ICF. However, temperature will change rapidly due to change of inner density and so would be the pressure of compressible fluid following adiabatic law. Our analytical results agree qualitatively with those of simulation results in spherical geometry and also experimental observations conducted in cylindrical container.

Cite this paper
Mandal, L. , Roy, S. , Khan, M. and Roychoudhury, R. (2015) Shock Induced Symmetric Compression in a Spherical Target. Journal of Modern Physics, 6, 1769-1775. doi: 10.4236/jmp.2015.613178.
References
[1]   Plesset. M.S. (1954) On the Stability of Fluid Flows with Spherical Symmetry. Journal of Applied Physics, 25, 96-99.
http://dx.doi.org/10.1063/1.1721529

[2]   Landau, L.D. and Lifshitz, E.M. (1984) Fluid Mechanics. Pergamon Press, Oxford.

[3]   Shiau, J.N., Goldman, E.B. and Weng, C.I. (1974) Linear Stability Analysis of Laser-Driven Spherical Implosions. Physical Review Letters, 32, 352-355.
http://dx.doi.org/10.1103/PhysRevLett.32.352

[4]   Henderson, D.B. and Morse, R.L. (1974) Symmetry of Laser Driven Implosion. Physical Review Letters, 32, 355-358.
http://dx.doi.org/10.1103/PhysRevLett.32.355

[5]   Hora, H. and Miley, G.H. (1991) Laser Interaction and Related Plasma Phenomena. Plenum, New York.

[6]   Piriz, A.R. (1986) The Ablative Implosion of Spherical Shells. Physics of Fluids, 29, 578-582.
http://dx.doi.org/10.1063/1.865448

[7]   Piriz, A.R. (1989) The Implosion of Two-Layer Spherical Shell Target. Physics of Fluids B: Plasma Physics, 1, 1477-1482.
http://dx.doi.org/10.1063/1.858977

[8]   Miakaelian, K.O. (2005) Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Mixing in Stratified Cylindrical Shells. Physics of Fluids, 17, Article ID: 094105.

[9]   Miakaelian, K.O. and Lindl, J.D. (1984) Density Gradients to Reduce Fluid Instabilities in Multishell Inertial-Confinement-Fusion Targets. Physical Review A, 29, 290-296.
http://dx.doi.org/10.1103/PhysRevA.29.290

[10]   Miakaelian, K.O. (1990) Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Multilayer Fluids with Surface Tension. Physical Review A, 42, 7211-7225.
http://dx.doi.org/10.1103/PhysRevA.42.7211

[11]   Miakaelian, K.O. (1990) Stability and Mix in Spherical Geometry. Physical Review Letters, 65, 992-995.
http://dx.doi.org/10.1103/PhysRevLett.65.992

[12]   Hwang, C.S. and Roderick, N.F. (1987) Potential Flow Model for the Hydromagnetic Rayleigh-Taylor Instability in Cylindrical Plasmas. Physical Review E, 62, 95-100.

[13]   Volpe, L., Jafer, R., Vauzour, B., Nicolai, Ph., Santos, J.J., Dorchies, F., Fourment, C., Hulin, S., Regan, C., Perez, F., Baton, S., Lancaster, S., Galimberti, M., Heathcote, R., Tolley, M., Spindloe, Ch., Nazarov, W., Koester, P., Labate, L., Gizzi, L.A., Benedetti, C., Sgattoni, A., Richetta, M., Pasley, J., Beg, F.N., Chawla, S., Higginson, D.P., MacPhee, A.G. and Batani, D. (2011) Proton Radiography of Cylindrical Laser-Driven Implosions. Plasma Physics and Control Fusion, 53, 032003-032009.
http://dx.doi.org/10.1088/0741-3335/53/3/032003

[14]   Vauzour, B., Perez, F., Volpe, L., Lancaster, K., Nicolay, Ph., Batani, D., Baton, D., Beg, F.N., Benedetti, C., Brambrink, E., Chawla, S., Dorchies, F., Fourment, C., Galimberti, M., Gizzi, L.A., Heathcote, R., Higginson, D.P., Hulin, S., Jafer, R., Koster, P., Labate, L., MacKinnon, A.J., MacPhee, A.G., Nazarov, W., Pasley, J., Regan, C., Ribeyre, X., Richetta, M., Schurtz, G., Sgattoni, A. and Santos, J.J. (2011) Laser-Driven Cylindrical Compression of Targets for Fast Electron Transport Study in Warm and Dense Plasmas. Physics of Plasmas, 18, Article ID: 043108.

[15]   Volpe, L., Batani, D., Vauzour, B., Nicolai, Ph., Santos, J.J., Regan, C., Morace, A., Dorchies, F., Fourment, C., Hulin, S., Perez, F., Baton, S., Lancaster, K., Galimberti, M., Heathcote, R., Tolley, M., Spindloe, Ch., Koester, P., Labate, L., Gizzi, L.A., Benedetti, C., Sgattoni, A., Richetta, M., Pasley, J., Beg, F., Chawla, S., Higginson, D.P. and MacPhee, A.G. (2011) Proton Radiography of Laser-Driven Imploding Target in Cylindrical Geometry. Physics of Plasmas, 18, Article ID: 012704.

[16]   Hallo, L., Olazabal-Loum, M., Ribeyre, X., Dran, V., Schurtz, G., Feugeas, J., Breil, J., Nicola, P. and Maire, P. (2009) Hydrodynamic and Symmetry Safety Factors of HiPER’s Targets. Plasma Physics and Control Fusion, 51, Article ID: 014001.
http://dx.doi.org/10.1088/0741-3335/51/1/014001

[17]   Ribeyre, X., Schurtz, G., Lafon, M., Garela, S. and Weber, S. (2009) Shock Ignition: An Alternative Scheme for HiPER. Plasma Physics and Control Fusion, 51, Article ID: 015013.
http://dx.doi.org/10.1088/0741-3335/51/1/015013

[18]   McCrory, R.L., Soures, J.M., Verdon, C.P., Marshall, F.J., Letzring, S.A., Skuspky, S., Kessler, T.J., Kremens, R.L., Knauer, J.P., Kim, H., Delettrez, J., Keck, R.L. and Bradely, D.K. (1988) Laser Driven Implosion of Thermonuclear Fuel to 20 to 40 g·cm–3. Nature, 335, 225-229.
http://dx.doi.org/10.1038/335225a0

[19]   McCrory, R.L., Soures, J.M., Verdon, C.P., Skupsky, S., Kessler, T.J., Letzring, S.A., Seka, W., Craxton, R.S., Short, R., Jaanimagi, P.A., Skeldon, M., Bradley, D.K., Delettrez, J., Keck, R.L., Kim, H., Knauer, J.P., Kremens, R.L. and Marshall, F.J. (1989) Laser Compression and Stability in Inertial Confinement Fusion. Plasma Physics and Control Fusion, 31, 1517-1533.
http://dx.doi.org/10.1088/0741-3335/31/10/004

 
 
Top