Fractional Weierstrass Function by Application of Jumarie Fractional Trigonometric Functions and Its Analysis

Show more

References

[1] Mandelbrot, B.B. (1982) The Geometry of Nature. Freeman, San Francisco.

[2] Peitgen, H. and Saupe, D., Eds. (1988) The Science of Fractal Images. Springer-Verlag, New York.

[3] Ghosh, U. and Khan, D.K. (2014) Information, Fractal, Percolation and Geo-Environmental Complexities. LAP LAMBERT Academic Publishing.

[4] Ross, B. (1977) The Development of Fractional Calculus 1695-1900. Historia Mathematica, 4, 75-89.

http://dx.doi.org/10.1016/0315-0860(77)90039-8

[5] Diethelm, K. (2010) The Analysis of Fractional Differential Equations. Springer-Verlag.

http://dx.doi.org/10.1007/978-3-642-14574-2

[6] Kilbas, A., Srivastava, H.M. and Trujillo, J.J. (2006) Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Elsevier Science, Amsterdam, 1-523.

[7] Miller, K.S. and Ross, B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York.

[8] Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993) Fractional Integrals and Derivatives. Gordon and Breach Science, Yverdon.

[9] Das, S. (2011) Functional Fractional Calculus. 2nd Edition, Springer-Verlag.

http://dx.doi.org/10.1007/978-3-642-20545-3

[10] Jumarie, G. (2007) Fractional Partial Differential Equations and Modified Riemann-Liouville Derivatives. Method for Solution. Journal of Applied Mathematics and Computing, 24, 31-48.

[11] Podlubny, I. (1999) Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, San Diego, 198.

[12] Liang, Y.S. and Su, W. (2007) Connection between the Order of Fractional Calculus and Fractional Dimensions of a Type of Fractal Functions. Analysis in Theory and Applications, 23, 354-362.

[13] Falconer, J. (1990) Fractal Geometry: Mathematical Foundations and Applications. John Wiley Sons Inc., New York.

[14] Johensen, J. (2010) Simple Proofs of Nowhere-Differentiability for Weierstrass’s Function and Cases of Slow Growth. Journal of Fourier Analysis and Applications, 16, 17-33.

http://dx.doi.org/10.1007/s00041-009-9072-2

[15] Zhou, S.P., Yao, K. and Su, W.Y. (2004) Fractional Integrals of the Weierstrass Functions: The Exact Box Dimension. Analysis in Theory and Applications, 20, 332-341.

http://dx.doi.org/10.1007/BF02835226

[16] Kolwankar, K.M. and Gangal, A.D. (1997) Holder Exponent of Irregular Signals and Local Fractional Derivatives. Pramana, 48, 49-68.

http://dx.doi.org/10.1007/BF02845622

[17] Jumarie, G. (2006) Modified Riemann-Liouville Derivative and Fractional Taylor Series of Non-Differentiable Functions Further Results. Computers and Mathematics with Applications, 51, 1367-1376.

http://dx.doi.org/10.1016/j.camwa.2006.02.001

[18] Jumarie, G. (2008) Fourier’s Transformation of Fractional Order via Mittag-Leffler Function and Modified Riemann-Liouville Derivatives. Journal of Applied Mathematics and Informatics, 26, 1101-1121.

[19] Erdelyi, A. (1954) Asymptotic Expansions. Dover Publications, New York.

[20] Erdelyi, A., Ed. (1954) Tables of Integral Transforms. Volume 1, McGraw-Hill, New York.

[21] Erdelyi, A. (1950) On Some Functional Transformation Univ Potitec Torino 1950.

[22] Mittag-Leffler, G.M. (1903) Sur la nouvelle fonction Eα(x). Comptes Rendus de l’Académie des Sciences, 137, 554-558.

[23] Hunt, B.R. (1998) The Hausdorff Dimension of Graph of Weierstrass Functions. Proceedings of the American Mathematical Society, 126, 791-801.

http://dx.doi.org/10.1090/S0002-9939-98-04387-1

[24] Wen, Y.Z. (2000) Mathematical Foundations of Fractal Geometry. Shanghai Science and Technology Educational Publishing House, Shanghai.

[25] Zahle, M. and Ziezold, H. (1996) Fractional Derivatives of Weierstrass-Type Functions. Journal of Computational and Applied Mathematics, 76, 265-275.

http://dx.doi.org/10.1016/S0377-0427(96)00110-0