Cite this paper
El Naschie, M. (2015) If Quantum “Wave” of the Universe Then Quantum “Particle” of the Universe: A Resolution of the Dark Energy Question and the Black Hole Information Paradox.
International Journal of Astronomy and Astrophysics,
5, 243-247. doi:
10.4236/ijaa.2015.54027.
References
[1] Hartle, J.B. and Hawking, S.W. (1983) Wave Function of the Universe. Physics Review D, 28, 2960-2975.
http://dx.doi.org/10.1103/PhysRevD.28.2960
[2] Hawking, S. and Penrose, R. (1996) The Nature of Space and Time. Princeton University Press, Princeton, New Jersey.
[3] Misner, C., Thorne, K. and Wheeler, J. (1973) Gravitation. Freeman, New York.
[4] Hawking, S. (1993) Hawking on the Big Bang and Black Holes. World Scientific, Singapore.
[5] Gibbons, G.W. and Hawking, S.W. (1993) Euclidean Quantum Gravity. World Scientific, Singapore.
http://dx.doi.org/10.1142/1301
[6] Hawking, S. and Israel, W. (1990) 300 Years of Gravitation. Cambridge University Press, Cambridge, UK.
[7] Tayler, E.F. and Wheeler, J.A. (1966) Spacetime Physics. W.H. Freeman Company, New York, USA.
[8] Amendola, L. and Tsujikawa, S. (2010) Dark Energy: Theory and Observation. Cambridge University Press, Cambridge, UK.
http://dx.doi.org/10.1017/CBO9780511750823
[9] Connes, A. (1994) Noncommutative Geometry. Academic Press, San Diego, USA.
[10] He, J.-H. (2014) A Tutorial Review on Fractal Spacetime and Fractional Calculus. International Journal of Theoretical Physics, 53, 3698-3718.
http://dx.doi.org/10.1007/s10773-014-2123-8
[11] El Naschie, M.S. (1998) Von Neumann Geometry and E-Infinity Quantum Spacetime. Chaos, Solitons & Fractals, 9, 2023-2030.
[12] El Naschie, M.S. (2014) The Measure Concentration of Convex Geometry in a Quasi Banach Spacetime behind the Supposedly Missing Dark Energy of the Cosmos. American Journal of Astronomy & Astrophysics, 2, 72-77.
http://dx.doi.org/10.11648/j.ajaa.20140206.13
[13] Moskowitz, C. (2015) Stephen Hawking Hasn’t Solved the Black Hole Paradox Just Yet. Scientific American, 27 August 2015.
[14] El Naschie, M.S. (2006) Fractal Black Holes and Information. Chaos, Solitons & Fractals, 29, 23-35.
http://dx.doi.org/10.1016/j.chaos.2005.11.079
[15] El Naschie, M.S. (2013) Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schrodinger Quantum Wave. Journal of Modern Physics, 4, 591-596.
http://dx.doi.org/10.4236/jmp.2013.45084
[16] El Naschie, M.S. (2013) What Is the Missing Dark Energy in a Nutshell and the Hawking-Hartle Quantum Wave Collapse. International Journal of Astronomy and Astrophysics, 3, 205-211.
http://dx.doi.org/10.4236/ijaa.2013.33024
[17] Susskind, L. and Lindesay, J. (2005) Black Holes, Information and the String Theory Revolution. World Scientific, Singapore.
[18] Susskind, L. (2008) The Black Hole War. Back Bay Books, New York.
[19] ‘t Hooft, G. (1985) On the Quantum Structure of a Black Hole. Nuclear Physics B, 256, 727-745.
http://dx.doi.org/10.1016/0550-3213(85)90418-3
[20] El Naschie, M.S. (2014) From E = mc2 to E = mc2/22—A Short Account of the Most Famous Equation in Physics and Its Hidden Quantum Entangled Origin. Journal of Quantum Information Science, 4, 284-291.
http://dx.doi.org/10.4236/jqis.2014.44023
[21] El Naschie, M.S. (2004) A Review of E-Infinity and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236.
http://dx.doi.org/10.1016/S0960-0779(03)00278-9
[22] El Naschie, M.S. (2015) Banach Spacetime-Like Dvoretzky Volume Concentration as Cosmic Holographic Dark Energy. International Journal of High Energy Physics, 2, 13-21.
http://dx.doi.org/10.11648/j.ijhep.20150201.12
[23] Ball, K. (1997) An Elementary Introduction to Modern Convex Geometry. In: Levy, S., Ed., Flavors of Geometry, Cambridge University Press, Cambridge, 1-58.
[24] Baryshev, Y. and Teerikorpe, P. (2002) Discovery of Cosmic Fractals. World Scientific, Hackensack.
[25] Kauffman, L.H. (1987) Self-Reference and Recursive Form. Journal of Social and Biological Structures, 10, 53-72.
http://dx.doi.org/10.1016/0140-1750(87)90034-0