[1] Petschek, J.P., Mermer, M.J., Scheckelhoff, M.R., Simone, A.A. and Vaughn, J.C. (1996) RNA Editing in Drosophila 4f-rnp Gene Nuclear Transcripts by Multiple A-to-G Conversions. Journal of Molecular Biology, 259, 885-890.
http://dx.doi.org/10.1006/jmbi.1996.0365
[2] Petschek, J.P., Scheckelhoff, M.R., Mermer, M.J. and Vaughn, J.C. (1997) RNA Editing and Alternative Splicing Generate mRNA Transcript Diversity from the Drosophila 4f-rnp Locus. Gene, 204, 267-276.
http://dx.doi.org/10.1016/S0378-1119(97)00465-4
[3] Peters, N.T., Rohrbach, J.A., Zalewski, B.A., Byrkett, C.M. and Vaughn, J.C. (2003) RNA Editing and Regulation of Drosophila 4f-rnp Expression by sas-10 Antisense Readthrough mRNA Transcripts. RNA, 9, 698-710.
http://dx.doi.org/10.1261/rna.2120703
[4] Fetherson, R.A., Strock, S.B., White, K.N. and Vaughn, J.C. (2006) Alternative Pre-mRNA Splicing in Drosophila Spliceosomal Assembly Factor RNP-4F during Development. Gene, 371, 234-245.
http://dx.doi.org/10.1016/j.gene.2005.12.025
[5] Chen, J., Concel, V.J., Bhatla, S., Rajeshwaran, R., Smith, D.L.H., Varadarajan, M., Backscheider, K.L., Bockrath, R.A., Petschek, J.P. and Vaughn, J.C. (2007) Alternative Splicing of an rnp-4f mRNA Isoform Retaining an Evolutionarily-Conserved 5’-UTR Intronic Element Is Developmentally Regulated and Shown via RNAi to Be Essential for Normal Central Nervous System Development in Drosophila melanogaster. Gene, 399, 91-104.
http://dx.doi.org/10.1016/j.gene.2007.04.038
[6] Chen, J., Lakshmi, G.G., Hays, D.L., McDowell, K.M., Ma, E. and Vaughn, J.C. (2009) Spatial and Temporal Expression of dADAR mRNA and Protein Isoforms during Embryogenesis in Drosophila melanogaster. Differentiation, 78, 312-320.
http://dx.doi.org/10.1016/j.diff.2009.08.003
[7] Lakshmi, G.G., Ghosh, S., Jones, G.P., Parikh, R., Rawlins, B.A. and Vaughn, J.C. (2012) An RNA Electrophoretic Mobility Shift and Mutational Analysis of rnp-4f 5’-UTR Intron Splicing Regulatory Proteins in Drosophila Reveals a Novel New Role for a dADAR Protein Isoform. Gene, 511, 161-168.
http://dx.doi.org/10.1016/j.gene.2012.09.088
[8] Chen, J., Yang, J.T., Doctor, D.L., Rawlins, B.A., Shields, B.C. and Vaughn, J.C. (2013) 5’-UTR Mediated Translational Control of Splicing Assembly Factor RNP-4F Expression during Development of the Drosophila Central Nervous System. Gene, 528, 154-162.
http://dx.doi.org/10.1016/j.gene.2013.07.027
[9] Ghosh, S., Wang, Y., Cook, J.A., Chhiba, L. and Vaughn, J.C. (2013) A Molecular, Phylogenetic and Functional Study of the dADAR mRNA Truncated Isoform during Drosophila Embryonic Development Reveals an Editing-Independent Function. Open Journal of Animal Sciences, 3, 20-30.
http://dx.doi.org/10.4236/ojas.2013.34A2003
[10] Hess, K.A., Simone, A.A. and Petschek, J.P. (1996) Spatial and Temporal Expression of the 4f-rnp Gene in Drosophila melanogaster. Differentiation, 61, 103-111.
http://dx.doi.org/10.1046/j.1432-0436.1996.6120103.x
[11] Bell, M., Schreiner, S., Damianov, A., Reddy, R. and Bindereif, A. (2002) p110, a Novel Human U6-snRNP Protein and U4/U6-snRNP Recycling Factor. The EMBO Journal, 21, 2724-2735.
http://dx.doi.org/10.1093/emboj/21.11.2724
[12] Rader, S.D. and Guthrie, C. (2002) A Conserved Lsm-Interaction Motif in Prp24 Required for Efficient U4/U6 di-snRNP Formation. RNA, 8, 1378-1392.
http://dx.doi.org/10.1017/S1355838202020010
[13] Mignone, F., Gissi, C., Liuni, S. and Pesole, G. (2002) Untranslated Regions of mRNAs. Genome Biology, 3, 0004.1-0004.10.
[14] Pickering, B.M. and Willis, A.E. (2005) The Implications of Structured 5’-Untranslated Regions on Translation and Disease. Seminars in Cell and Developmental Biology, 16, 39-47.
http://dx.doi.org/10.1016/j.semcdb.2004.11.006
[15] Chatterjee, S. and Pal, J.K. (2009) Role of 5’- and 3’-Untranslated Regions of mRNAs in Human Diseases. Biology of the Cell, 101, 251-262.
http://dx.doi.org/10.1042/BC20080104
[16] Klausner, R.D., Rouault, T.A. and Harford, J.B. (1993) Regulating the Fate of mRNA: The Control of Cellular Iron Metabolism. Cell, 72, 19-28.
http://dx.doi.org/10.1016/0092-8674(93)90046-S
[17] Gebauer, F., Grskovic, M. and Hentze, M.W. (2003) Drosophila Sex-Lethal Inhibits the Stable Association of the 40S Ribosomal Subunit with msl2 mRNA. Molecular Cell, 11, 1397-1404.
http://dx.doi.org/10.1016/S1097-2765(03)00176-X
[18] Marzluff, W.F., Wagner, E.J. and Duronio, R.J. (2008) Metabolism and Regulation of Canonical Histone mRNAs: Life without a Poly(A) Tail. Nature Review Genetics, 9, 843-854.
http://dx.doi.org/10.1038/nrg2438
[19] Higuchi, M., Single, F.N., Kohler, M., Sommer, B., Sprengel, R. and Seeburg, P.H. (1993) RNA Editing of AMPA Receptor Subunit GluR-B: A Base-Paired Intron-Exon Structure Determines Position and Efficiency. Cell, 75, 1361-1370.
http://dx.doi.org/10.1016/0092-8674(93)90622-W
[20] Campos-Ortega, J.A. and Hartenstein, V. (1997) The Embryonic Development of Drosophila. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-662-22489-2
[21] Lewin, B. (1994) Genes V. Oxford University Press, New York.
[22] Zuker, M. (2003) Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucleic Acids Research, 31, 3406-3415.
http://dx.doi.org/10.1093/nar/gkg595
[23] Bischof, J., Maeda, R.K., Hediger, M., Karch, F. and Basler, K. (2007) An Optimized Transgenesis System for Drosophila Using Germ-Line-Specific C31 Integrases. Proceedings of the National Academy of Sciences of the United States of America, 104, 3312-3317.
http://dx.doi.org/10.1073/pnas.0611511104
[24] Brand, A.H. and Perrimon, N. (1993) Targeted Gene Expression as a Means of Altering Cell Fates and Generating Dominant Phenotypes. Development, 118, 401-415.
[25] Duffy, J.B. (2002) GAL4 System in Drosophila: A Fly Geneticist’s Swiss Army Knife. Genesis, 34, 1-15.
http://dx.doi.org/10.1002/gene.10150
[26] Edoff, K., Dods, J.S. and Brand, A.H. (2007) Detection of GFP during Nervous System Development in Drosophila melanogaster. Methods in Molecular Biology, 411, 81-98.
http://dx.doi.org/10.1007/978-1-59745-549-7_6
[27] Sun, B., Xu, P. and Salvaterra, P.M. (1999) Dynamic Visualization of Nervous System in Live Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 96, 10438-10443.
http://dx.doi.org/10.1073/pnas.96.18.10438
[28] Jandrositz, A. and Guthrie, C. (1995) Evidence for a Prp24 Binding Site in U6 snRNA in a Putative Intermediate in the Annealing of U6 and U4 snRNA. The EMBO Journal, 14, 820-832.
[29] Vaughn, J.C., Ghosh, S. and Chen, J. (2013) A Phylogenetic Study of Drosophila Splicing Assembly Chaperone RNP-4F Associated U4-/U6-snRNA Secondary Structure. Open Journal of Animal Sciences, 3, 36-48.
http://dx.doi.org/10.4236/ojas.2013.34A2005
[30] Semotok, J.L., Cooperstock, R.L., Pinder, B.D., Vari, H.K. and Lipshitz, H.D. (2005) Smaug Recruits the CCR4/ POP2/NOT Deadenylase Complex to Trigger Maternal Transcript-Localization in the Early Drosophila Embryo. Current Biology, 15, 284-294.
http://dx.doi.org/10.1016/j.cub.2005.01.048
[31] Ladd, A.N. and Cooper, T.A. (2002) Finding Signals That Regulate Alternative Splicing in the Post-Genomic Era. Genome Biology, 3, 0008.1-0008.16.
[32] Zheng, Z.M. (2004) Regulation of Alternative RNA Splicing by Exon Definition and Exon Sequences in Viral and Mammalian Gene Expression. Journal of Biomedical Science, 11, 278-294.
http://dx.doi.org/10.1007/BF02254432
[33] Wang, Z., Rolish, M.E., Yeo, G., Tung, V., Mawson, M. and Burge, C.B. (2004) Systematic Identification and Analysis of Exonic Splicing Silencers. Cell, 119, 831-845.
http://dx.doi.org/10.1016/j.cell.2004.11.010
[34] Mosner, J., Mummenbrauer, T., Bauer, C., Sczakiel, G., Grosse, F. and Deppert, W. (1995) Negative Feedback Regulation of Wild-Type p53 Biosynthesis. The EMBO Journal, 14, 4442-4449.
http://dx.doi.org/10.1007/bf02572252
[35] Takagi, M., Absalon, M.J., McLure, K.G. and Kastan, M.B. (2005) Regulation of p53 Translation and Induction after DNA Damage by Ribosomal Protein L26 and Nucleolin. Cell, 123, 49-63.
http://dx.doi.org/10.1016/j.cell.2005.07.034
[36] Graindorge, A., Carre, C. and Gebauer, F. (2013) Sex-Lethal Promotes Nuclear Retention of msl2 mRNA via Interactions with the STAR Protein HOW. Genes and Development, 27, 1421-1433.
http://dx.doi.org/10.1101/gad.214999.113