[1] Leland, E.S., Lai, E.M. and Wright, P.K. (2004) A Self-Powered Wireless Sensor for Indoor Environmental Monitoring. WNCG Conference, Austin.
[2] Arms, S., Townsend, C.P., et al. (2005) Power Management for Energy Harvesting Wireless. Smart Structures and Materials 2005: Smart Electronic, MEMS, BioMEMS, and Nanotechnology, Proc of SPIE 2005, 5763, 267-275.
http://dx.doi.org/10.1117/12.600302
[3]
http://www.innowattech.co.il/index.aspx
[4] Cao, B.-G., Gao, Z.-H., Song, Z.-P., et al. (2005) Method and System of Highway Harvesting Energy from Piezoelectric Vibration: China, 1633009A.
[5] Zhao, H.D., Yu, J. and Ling, J.M. (2010) Finite Element Analysis of Cymbal Piezoelectric Transducers for Harvesting Energy from Asphalt Pavement. Journal of the Ceramic Society of Japan, 118, 909-915.
http://dx.doi.org/10.2109/jcersj2.118.909
[6] Sun, C.-H., Du, J.-H., Wang, H.-B. and Shang, G.-Q. (2013) Properties Analysis of Piezoelectric Harvesters from Pavement Vibration. Piezoelectics & Acoustooptics, 35, 556-560.
[7] Sun, C.-H., Shang, G.-Q., Zhang, Y.-K. and Du, J.-H. (2013) Designing Piezoelectric Harvesting Unit from Road Vibration. Advanced Materials Research, 712-715, 1368-1371.
[8] Shan, J.-S., Huang, X.-M. and Liao, G.-Y. (2007) Dynamic Response Analysis of Pavement Structure under Moving Load. Journal of Highway and Transportation Research and Development, 24, 10-13.
[9] Shi, C.-X., Yang, Q. and Guo, Z.-Y. (2008) Research on Mechanical Properties of Asphalt Pavement in Highway Tunnel. Journal of Highway and Transportion Research and Development, 25, 8-11.