References
[1] US Department of Agriculture Animal and Plant Health Services. Info Sheet: Bovine Leukosis Virus (BLV) in U.S. Beef Cattle. February 1999.
[2] Tonini, T., Rossi, F. and Claudio, P.P. (2003) Molecular Basis of Angiogenesis and Cancer. Oncogene, 22, 6549-6556.
http://dx.doi.org/10.1038/sj.onc.1206816
[3] Liekens, S., De Clercq, E. and Neyts, J. (2001) Angiogenesis: Regulators and Clinical Applications. Biochemical Pharmacology, 61, 253-270.
http://dx.doi.org/10.1016/S0006-2952(00)00529-3
[4] Nishida, N., et al. (2006) Angiogenesis in Cancer. Vascular Health and Risk Management, 2, 213-219.
http://dx.doi.org/10.2147/vhrm.2006.2.3.213
[5] Schneider, B.P. and Miller, K.D. (2005) Angiogenesis of Breast Cancer. Journal of Clinical Oncology, 23, 1782-1790.
http://dx.doi.org/10.1200/JCO.2005.12.017
[6] Karamysheva, A.F. (2008) Mechanisms of Angiogenesis. Biochemistry (Moscow), 73, 751-762.
http://dx.doi.org/10.1134/S0006297908070031
[7] Carmeliet, P. (2000) Mechanisms of Angiogenesis and Arteriogenesis. Nature Medicine, 6, 389-395.
http://dx.doi.org/10.1038/74651
[8] Jain, R.K. (2003) Molecular Regulation of Vessel Maturation. Nature Medicine, 9, 685-693.
http://dx.doi.org/10.1038/nm0603-685
[9] Pugh, C.W. and Ratcliffe, P.J. (2003) Regulation of Angiogenesis by Hypoxia: Role of the HIF System. Nature Medicine, 9, 677-684.
http://dx.doi.org/10.1038/nm0603-677
[10] Van Meir, E.G., et al. (1994) Release of an Inhibitor of Angiogenesis upon Induction of Wild Type p53 Expression in Glioblastoma Cells. Nature Genetics, 8, 171-176.
http://dx.doi.org/10.1038/ng1094-171
[11] Wu, H.-C., Huang, C.-T. and Chang, D.-K. (2008) Anti-Angiogenic Therapeutic Drugs for Treatment of Human Cancer. Journal of Cancer Molecules, 4, 37-45.
[12] Al-Shammari, A.M., Alshami, M., Umran, M., et al. (2015) Establishment and Characterization of a Receptor-Negative, Hormone-Nonresponsive Breast Cancer Cell Line from an Iraqi Patient. Breast Cancer: Targets and Therapy, 7, 223-230.
http://dx.doi.org/10.2147/BCTT.S74509
[13] Würtz, S.O., et al. (2005) Tissue Inhibitor of Metalloproteinases-1 in Breast Cancer. Endocrine-Related Cancer, 12, 215-227.
http://dx.doi.org/10.1677/erc.1.00719
[14] Ikenaka, Y., Yoshiji, H., Kuriyama, S., et al. (2003) Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) Inhibits Tumor Growth and Angiogenesis in the TIMP-1 Transgenic Mouse Model. International Journal of Cancer, 105, 340-346.
http://dx.doi.org/10.1002/ijc.11094
[15] Bourboulia, D., Jensen-Taubman, S., Rittler, M.R., et al. (2011) Endogenous Angiogenesis Inhibitor Blocks Tumor Growth via Direct and Indirect Effects on Tumor Microenvironment. The American Journal of Pathology, 179, 2589-2600.
http://dx.doi.org/10.1016/j.ajpath.2011.07.035
[16] Têtu, B., Brisson, J., Wang, C., et al. (2006) The Influence of MMP-14, TIMP-2 and MMP-2 Expression on Breast Cancer Prognosis. Breast Cancer Research, 8, R28.
http://dx.doi.org/10.1186/bcr1503
[17] Elias, A.P. and Dias, S. (2008) Microenvironment Changes (in pH) Affect VEGF Alternative Splicing. Cancer Microenvironment, 1, 131-139.
http://dx.doi.org/10.1007/s12307-008-0013-4
[18] Marjon, P.L., Bobrovnikova-Marjon, E.V. and Abcouwer, S.F. (2004) Expression of the Pro-Angiogenic Factors Vascular Endothelial Growth Factor and Interleukin-8/CXCL8 by Human Breast Carcinomas Is Responsive to Nutrient Deprivation and Endoplasmic Reticulum Stress. Molecular Cancer, 3, 5670-5674.
[19] Saponaro, C., Malfettone, A., Ranieri, G., et al. (2013) VEGF, HIF-1alpha Expression and MVD as an Angiogenic Network in Familial Breast Cancer. PLoS ONE, 8, e53070.
http://dx.doi.org/10.1371/journal.pone.0053070
[20] Darrington, E., Zhong, M., Vo, B.-H., et al. (2012) Vascular Endothelial Growth Factor A, Secreted in Response to Transforming Growth Factor-β1 under Hypoxic Conditions, Induces Autocrine Effects on Migration of Prostate Cancer Cells. Asian Journal of Andrology, 14, 745-751.
http://dx.doi.org/10.1038/aja.2011.197
[21] Matei, D., Kelich, S., Cao, L.Y., et al. (2007) PDGF BB Induces VEGF Secretion in Ovarian Cancer. Cancer Biology & Therapy, 6, 1951-1959.
http://dx.doi.org/10.4161/cbt.6.12.4976
[22] Nakamura, Y., Yasuoka, H., Tsujimoto, M., et al. (2003) Prognostic Significance of Vascular Endothelial Growth Factor D in Breast Carcinoma with Long-Term Follow-Up. Clinical Cancer Research, 9, 716-721.
[23] Stacker, S.A., Caesar, C., Baldwin, M.E., Thornton, G.E., et al. (2001) VEGF-D Promotes the Metastatic Spread of Tumor Cells via the Lymphatics. Nature Medicine, 7, 186-191.
http://dx.doi.org/10.1038/84635
[24] Murphy, L.C. and Dotzlaw, H. (1989) Endogenous Growth Factor Expression in T-47D, Human Breast Cancer Cells, Associated with Reduced Sensitivity to Antiproliferative Effects of Progestins and Antiestrogens. Cancer Research, 49, 599-604.
[25] O’sullivan, C., Lewis, C.E., Harris, A.L., et al. (1993) Secretion of Epidermal Growth Factor by Macrophages Associated with Breast Carcinoma. The Lancet, 342, 148-149.
http://dx.doi.org/10.1016/0140-6736(93)91348-P
[26] Mori, K., Kurobe, M., Furukawa, S., et al. (1986) Human Breast Cancer Cells Synthesize and Secrete an EGF-Like Immunoreactive Factor in Culture. Biochemical and Biophysical Research Communications, 136, 300-305.
http://dx.doi.org/10.1016/0006-291X(86)90909-5
[27] El-Sayed, L.H.G., Fadali, G., Saad, A., Hafez, E.S. and Shaaban, S. (2010) Expression of MAGE-A Genes and Soluble ICAM-1 in Egyptian Breast Cancer Patients: Possible Prognostic Impact. Journal of the Medical Research Institute, 31, 7-18.
[28] Thielemann, A., Baszczuk, A., Kopczyński, Z., et al. (2014) The Clinical Usefulness of Assessing the Concentration of Cell Adhesion Molecules sVCAM-1 and sICAM-1 in the Serum of Women with Primary Breast Cancer. Wspólczesna Onkologia, 4, 252-259.
http://dx.doi.org/10.5114/wo.2014.43492
[29] Eggeman, H., et al. (2011) Influence of a Dose-Dense Adjuvant Chemotherapy on sVCAM-1/sICAM-1 Serum Levels in Breast Cancer Patients with 1-3 Positive Lymph Nodes. Anticancer Research, 31, 2617-2622.
[30] Touvier, M., Fezeu, L., Ahluwalia, N., et al. (2013) Association between Prediagnostic Biomarkers of Inflammation and Endothelial Function and Cancer Risk: A Nested Case-Control Study. American Journal of Epidemiology, 177, 3-13.
http://dx.doi.org/10.1093/aje/kws359
[31] Lai, L., Kadory, S., Cornell, C., et al. (1993) Possible Regulation of Soluble Icam-1 Levels by Interleukin-1 in a Sub-Set of Breast Cysts. International Journal of Cancer, 55, 586-589.
http://dx.doi.org/10.1002/ijc.2910550412
[32] Cross, M.J. and Claesson-Welsh, L. (2001) FGF and VEGF Function in Angiogenesis: Signalling Pathways, Biological Responses and Therapeutic Inhibition. Trends in Pharmacological Sciences, 22, 201-207.
http://dx.doi.org/10.1016/S0165-6147(00)01676-X
[33] Sahni, A., Simpson-Haidaris, P.J., Sahni, S.K., et al. (2008) Fibrinogen Synthesized by Cancer Cells Augments the Proliferative Effect of Fibroblast Growth Factor-2 (FGF-2). Journal of Thrombosis and Haemostasis, 6, 176-183.
http://dx.doi.org/10.1111/j.1538-7836.2007.02808.x
[34] MacCallum, J., Bartlett, J.M.S., Thompson, A.M., et al. (1994) Expression of Transforming Growth Factor Beta mRNA Isoforms in Human Breast Cancer. British Journal of Cancer, 69, 1006-1009.
http://dx.doi.org/10.1038/bjc.1994.197
[35] Buck, M.B. and Knabbe, C. (2006) TGF-Beta Signaling in Breast Cancer. Annals of the New York Academy of Sciences, 1089, 119-126.
http://dx.doi.org/10.1196/annals.1386.024
[36] Pardali, E. and ten Dijke, P. (2008) Transforming Growth Factor-Beta Signaling and Tumor Angiogenesis. Frontiers in Bioscience (Landmark Edition), 14, 4848-4861.
http://dx.doi.org/10.2741/3573
[37] Lebrun, J.-J. (2012) The Dual Role of TGF in Human Cancer: From Tumor Suppression to Cancer Metastasis. ISRN Molecular Biology, 2012, Article ID: 381428.