[1] Shimizu, Y. (1996) Microalgal Metabolites: A New Perspective. Annual Reviews in Microbiology, 50, 431-465.
http://dx.doi.org/10.1146/annurev.micro.50.1.431
[2] Akkerman, I., Janssen, M., Rocha, J. and Wijffels, R.H. (2002) Photobiological Hydrogen Production: Photochemical Efficiency and Bioreactor Design. International Journal of Hydrogen Energy, 27, 1195-1208.
http://dx.doi.org/10.1016/S0360-3199(02)00071-X
[3] Singh, A. and Ward, O. (2005) Microbiology of Bioreactors for Waste Gas Treatment. Springer, Berlin Heidelberg, 101-121. http://dx.doi.org/10.1007/3-540-27007-8_5
[4] Walker, T.L., Purton, S., Becker, D.K. and Collet, C. (2005) Microalgae as Bioreactors. Plant Cell Reports, 24, 629- 641. http://dx.doi.org/10.1007/s00299-005-0004-6
[5] Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006) Commercial Applications of Microalgae. Journal of Bioscience and Bioengineering, 101, 87-96.
http://dx.doi.org/10.1263/jbb.101.87
[6] Terry, K.L. and Raymond, L.P. (1985) System Design for the Autotrophic Production of Microalgae. Enzyme and Microbial Technology, 7, 474-487.
http://dx.doi.org/10.1016/0141-0229(85)90148-6
[7] Molina Grima, E., Fernández, F.G.A., Garccia Camacho, F. and Chisti, Y. (1999) Photobioreactors: Light Regime, Mass Transfer, and Scaleup. Journal of Biotechnology, 70, 231-247.
http://dx.doi.org/10.1016/S0168-1656(99)00078-4
[8] Borowitzka, M. (2005) Culturing Microalgae in Outdoor Ponds. Algal Culturing Techniques, 205-218.
http://dx.doi.org/10.1016/b978-012088426-1/50015-9
[9] Olaizola, M., Duerr, E. and Freeman, D. (1991) Effect of CO2 Enhancement in an Outdoor Algal Production System Using Tetraselmis. Journal of Applied Phycology, 3, 363-366.
http://dx.doi.org/10.1007/BF02392890
[10] Ho, T.-Y., Quigg, A., Finkel, Z.V., Milligan, A.J., Wyman, K., Falkowski, P.G. and Morel, F.M.M. (2003) The Elemental Composition of Some Marine Phytoplankton. Journal of Phycology, 39, 1145-1159.
http://dx.doi.org/10.1111/j.0022-3646.2003.03-090.x
[11] APHA (1998) Standard Methods for the Examination of Water and Wastewater. 20th Edition, American Public Health Association, New York.
[12] Davis, C.C. (1955) The Marine and Fresh-Water Plankton. Michigan State University Press, East Lansing.
[13] Cooksey, K.E., Guckert, J.B., Williams, S.A. and Callis, P.R. (1987) Fluorometric Determination of the Neutral Lipid Content of Microalgal Cells Using Nile Red. Journal of Microbiological Methods, 6, 333-345.
http://dx.doi.org/10.1016/0167-7012(87)90019-4
[14] de-Bashan, L.E., Trejo, A., Huss, V.A., Hernandez, J.-P. and Bashan, Y. (2008) Chlorella sorokiniana UTEX 2805, a Heat and Intense, Sunlight-Tolerant Microalga with Potential for Removing Ammonium from Wastewater. Bioresource Technology, 99, 4980-4989.
http://dx.doi.org/10.1016/j.biortech.2007.09.065
[15] Li, Y., Horsman, M., Wang, B., Wu, N. and Lan, C.Q. (2008) Effects of Nitrogen Sources on Cell Growth and Lipid Accumulation of Green Alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81, 629-636.
http://dx.doi.org/10.1007/s00253-008-1681-1
[16] Wong, M., Hung, K. and Chiu, S. (1996) Sludge-Grown Algae for Culturing Aquatic Organisms: Part II. Sludge-Grown Algae as Feeds for Aquatic Organisms. Environmental Management, 20, 375-384.
http://dx.doi.org/10.1007/BF01203845
[17] Harris, G. (2012) Phytoplankton Ecology: Structure, Function and Fluctuation. Springer Science & Business Media, Amesterdam.
[18] Trainor, F.R. (1970) Survival of Algae in a Desiccated Soil. Phycologia, 9, 111-113.
http://dx.doi.org/10.2216/i0031-8884-9-2-111.1
[19] Lurling, M. and Beekman, W. (2006) Palmelloids Formation in Chlamydomonas reinhardtii: Defence against Rotifer Predators? Annales de Limnologie—International Journal of Limnology, 42, 65-72.
[20] Jezberová, J. and Komárková, J. (2007) Morphological Transformation in a Freshwater Cyanobium sp. Induced by Grazers. Environmental Microbiology, 9, 1858-1862.
http://dx.doi.org/10.1111/j.1462-2920.2007.01311.x
[21] McGinnis, K.M., Dempster, T.A. and Sommerfeld, M.R. (1997) Characterization of the Growth and Lipid Content of the Diatom Chaetoceros muelleri. Journal of Applied Phycology, 9, 19-24.
http://dx.doi.org/10.1023/A:1007972214462
[22] Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. (2008) Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances. The Plant Journal, 54, 621-639.
http://dx.doi.org/10.1111/j.1365-313X.2008.03492.x
[23] Chaffin, J., Mishra, S., Kuhaneck, R., Heckathorn, S. and Bridgeman, T. (2012) Environmental Controls on Growth and Lipid Content for the Freshwater Diatom, Fragilaria capucina: A Candidate for Biofuel Production. Journal of Applied Phycology, 24, 1045-1051.
http://dx.doi.org/10.1007/s10811-011-9732-x
[24] Coombs, J., Halicki, P.J., Holm-Hansen, O. and Volcani, B.E. (1967) Studies on the Biochemistry and Fine Structure of Silica Shell Formation in Diatoms: II. Changes in Concentration of Nucleoside Triphosphates in Silicon-Starvation Synchrony of Navicula pelliculosa (Bréb.) Hilse. Experimental Cell Research, 47, 315-328.
http://dx.doi.org/10.1016/0014-4827(67)90234-0
[25] Chelf, P. (1990) Environmental Control of Lipid and Biomass Production in Two Diatom Species. Journal of Applied Phycology, 2, 121-129.
http://dx.doi.org/10.1007/BF00023373
[26] Griffiths, M.J. and Harrison, S.T. (2009) Lipid Productivity as a Key Characteristic for Choosing Algal Species for Biodiesel Production. Journal of Applied Phycology, 21, 493-507.
http://dx.doi.org/10.1007/s10811-008-9392-7
[27] Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M.R. (2009) Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low Cost Photobioreactor. Biotechnology and Bioengineering, 102, 100-112.
http://dx.doi.org/10.1002/bit.22033