Back
 JQIS  Vol.5 No.3 , September 2015
Formalized Operators with Phase Encoding
Abstract: In this article the concept of phase encoding/decoding is used to analyze and formalize a simple quantum algorithm—the Deutsch’s algorithm. The algorithm is formalized in two different ways through an analysis, based on phase encoding/decoding, carried out by the formalized elementary operators developed by the author of this article. Concrete examples of different possible realizations of the formalized with Raychev’s operators Deutsch’s algorithms are offered.
Cite this paper: Raychev, N. (2015) Formalized Operators with Phase Encoding. Journal of Quantum Information Science, 5, 114-126. doi: 10.4236/jqis.2015.53014.
References

[1]   Shor, P. (1997) Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing, 26, 1484-1509.
http://dx.doi.org/10.1137/S0097539795293172

[2]   Childs, A.M., Landahl, A.J. and Parrilo, P.A. (2007) Quantum Algorithm for Ordered Search Problem via Semidenite Programming. Physical Review A, 75, Article ID: 032335.
http://dx.doi.org/10.1103/PhysRevA.75.032335

[3]   Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A. and Preda, D. (2001) A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science, 292, 472-475.
http://dx.doi.org/10.1126/science.1057726

[4]   Harrow, A.W., Hassidim, A. and Lloyd, S. (2009) Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett., 103, 150502.
http://dx.doi.org/10.1103/PhysRevLett.103.150502

[5]   Bacon, D. and van Dam, W. (2010) Recent Progress in Quantum Algorithms. Commun. ACM, 53, 84-93.

[6]   Toffoli, T. (1980) Reversible Computing. In: Proceedings of the 7th Colloquium on Automata, Languages and Programming, Springer-Verlag, London, 632-644.
http://dx.doi.org/10.1007/3-540-10003-2_104

[7]   Bennett, C.H. (1989) Time/Space Trade-Offs for Reversible Computation. SIAM Journal on Computing, 18, 766-776.
http://dx.doi.org/10.1137/0218053

[8]   Deutsch, D. (1989) Quantum Computational Networks. Proceedings of the Royal Society of London A, 425, 73-90.
http://dx.doi.org/10.1098/rspa.1989.0099

[9]   Barenco, A. (1995) A Universal Two-Bit Gate for Quantum Computation. Proceedings ofthe Royal Society of London A, 449, 679-683.

[10]   Deutsch, D., Barenco, A. and Ekert, A. (1995) Universality in Quantum Computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 449, 669-677.
http://dx.doi.org/10.1098/rspa.1995.0065

[11]   Di Vincenzo, D.P. (1995) Two-Bit Gates Are Universal for Quantum Computation. Physical Review A, 51, 1015-1022.
http://dx.doi.org/10.1103/PhysRevA.51.1015

[12]   Lloyd, S. (1995) Almost Any Quantum Logic Gate Is Universal. Physical Review Letters, 75, 346-349.
http://dx.doi.org/10.1103/physrevlett.75.346

[13]   Nielsen, M. and Chuang, I. (2003) Quantum Computing and Quantum Information. Cambridge University Press, Cambridge.

[14]   Phillip Kaye, R.L. and Mosca, M. (2007) An Introduction to Quantum Computing. Oxford University Press, Oxford.

[15]   Rieffel, E. and Polak, W. (1998) An Introduction to Quantum Computing for Non-Physicists.
http://arxiv.org/abs/quant-ph/9809016

[16]   Raychev, N. (2015) Unitary Combinations of Formalized Classes in Qubit Space. International Journal of Scientific and Engineering Research, 6, 395-398.
http://dx.doi.org/10.14299/ijser.2015.04.003

[17]   Raychev, N. (2015) Functional Composition of Quantum Functions. International Journal of Scientific and Engineering Research, 6, 413-415.
http://dx.doi.org/10.14299/ijser.2015.04.004

[18]   Raychev, N. (2015) Logical Sets of Quantum Operators. International Journal of Scientific and Engineering Research, 6, 391-394.
http://dx.doi.org/10.14299/ijser.2015.04.002

[19]   Raychev, N. (2015) Controlled Formalized Operators. International Journal of Scientific and Engineering Research, 6, 1467-1469.
http://dx.doi.org/10.14299/ijser.2015.05.003

[20]   Raychev, N. (2015) Controlled Formalized Operators with Multiple Control Bits. International Journal of Scientific and Engineering Research, 6, 1470-1473.
http://dx.doi.org/10.14299/ijser.2015.05.001

[21]   Raychev, N. (2015) Connecting Sets of Formalized Operators. International Journal of Scientific and Engineering Research, 6, 1474-1476.
http://dx.doi.org/10.14299/ijser.2015.05.002

[22]   Raychev, N. (2015) Indexed Formalized Operators for N-Bit Circuits. International Journal of Scientific and Engineering Research, 6, 1477-1480.

[23]   Raychev, N. (2015) Universal Quantum Operators. International Journal of Scientific and Engineering Research, 6, 1369-1371.
http://dx.doi.org/10.14299/ijser.2015.06.005

[24]   Raychev, N. (2015) Encoding and Decoding of Additional Logic in the Phase Space of All Operators. International Journal of Scientific and Engineering Research, 6, 1356-1366.
http://dx.doi.org/10.14299/ijser.2015.07.003

 
 
Top