JFRM  Vol.4 No.3 , September 2015
Predicting Conditional Autoregressive Value-at-Risk for Stock Markets during Tranquil and Turbulent Periods
ABSTRACT
This paper analyzes the predictive performance of the Conditional Autoregressive Value at Risk (CAViaR) developed by Engle & Manganelli (2004) for major equity markets during tranquil and turbulent periods. The CAViaR model shifts the focus of attention from the distribution of returns directly to the behaviour of the quantile. We compare the predictive performance of four alternative CAViaR specifications, namely Adaptive, Symmetric Absolute Value, Asymmetric Slope and Indirect GARCH(1,1) models due to Engle & Manganelli (2004) along with the improved asymmetric CAViaR (I-CAViaR) model due to Huang et al. (2009). We employ daily returns for six stock markets indices, namely S & P500, FTSE100, NIKKEI225, DAX30, CAC40 and Athens Exchange General index for the period January 2, 1995 to August 23, 2013. We compare the predictive performance of the alternative specifications for three subperiods: before, during and after the recent 2007-2009 financial crisis. The comparison is done with the use of a battery of tests which includes unconditional and conditional coverage tests, the Dynamic Quantile high-order independence test and the White (2000) empirical coverage probability and predictive quantile loss tests. The main findings of the present analysis is that the CAViaR quantile regression models and the I-CAViaR model have shown significant success in predicting the VaR measure for various periods although this performance varies over the three periods before, during and after the 2007-2009 financial crisis.

Cite this paper
Drakos, A. A., Kouretas, G. P., & Zarangas, L. (2015) Predicting Conditional Autoregressive Value-at-Risk for Stock Markets during Tranquil and Turbulent Periods. Journal of Financial Risk Management, 4, 168-186. doi: 10.4236/jfrm.2015.43014.
References
[1]   Alexander, S. (2005). The Present and Future of Financial Risk Management. Journal of Financial Econometrics, 3, 3-25.
http://dx.doi.org/10.1093/jjfinec/nbi003

[2]   Alexander, S., Coleman, T. F., & Li, Y. (2006). Minimizing CVaR and VaR for a Portfolio of Derivatives. Journal of Banking and Finance, 30, 583-605.
http://dx.doi.org/10.1016/j.jbankfin.2005.04.012

[3]   Aloui, C., & ben Hamida, H. (2014). Modelling and Forecasting Value at Risk and Expected Shortfall for GCC Stock Markets: Do Long Memory, Structural Breaks, Asymmetry, and Fat-Tails Matter? North American Journal of Economics and Finance, 29, 349-380.
http://dx.doi.org/10.1016/j.najef.2014.06.006

[4]   Angelidis, T., Benos, A., & Degiannakis, S. (2004). The Use of GARCH Models in VaR Estimation. Statistical Methodology, 1, 105-128.
http://dx.doi.org/10.1016/j.stamet.2004.08.004

[5]   Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1997). Thinking Coherently. Risk, 10, 68-71.

[6]   Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent Measures of Risk. Mathematical Finance, 9, 203-228.
http://dx.doi.org/10.1111/1467-9965.00068

[7]   Bams, D., Lehnert, T., & Wolff, C. C. P. (2005). An Evaluation Framework for Alternative VaR-Models. Journal of International Money and Finance, 24, 922-958.
http://dx.doi.org/10.1016/j.jimonfin.2005.05.004

[8]   Bank for International Settlements (1988). International Convergence of Capital Measurement and Capital Standards. BCBS Publication Series, No.4.

[9]   Banking Supervision’s (1996). Amendment to the Capital Accord to Incorporate Market Risks.

[10]   Bank for International Settlements (1999a). Capital Requirements and Bank Behavior: The Impact of the Basel Accord. BCBS Working Paper Series, No. 1.

[11]   Bank for International Settlements (1999b). A New Capital Adequacy Framework. BCBS Publications Series, No. 50.

[12]   Bank for International Settlements (1999c). Supervisory Lesson to Be Drawn from the Asian Crisis. BCBS Working Paper Series, No. 2.

[13]   Bank for International Settlements (2001). The New Basel Capital Accord. Basel: BIS.

[14]   Basel Committee on Banking Supervision (1996). Amendment to the Capital Accord to Incorporate Market Risks.

[15]   Bao, Y., Lee, T., & Saltoglu, B. (2006). Evaluating the Predictive Performance of Value-at-Risk Models in Emerging Markets: A Reality Check. Journal of Forecasting, 25, 101-128.
http://dx.doi.org/10.1002/for.977

[16]   Bekiros, S., & Georgoutsos, D. A. (2005a). Estimation of Value-at-Risk by Extreme Value and Conventional Methods: A Comparative Evaluation of Their Predictive Performance. Journal of International Financial Markets, Institutions and Money, 15, 209-228.
http://dx.doi.org/10.1016/j.intfin.2004.05.002

[17]   Bekiros, S., & Georgoutsos, D. A. (2005b). Extreme Returns and the Contagion Effect between the Foreign Exchange and the Stock Market: Evidence from Cyprus. Multinational Finance Journal, Forthcoming.

[18]   Boudoukh, J., Richardson, M., & Whitelaw, R. F. (1998). The Best of Both Worlds. Risk, 11, 64-67.

[19]   Boyle, P., Hardy, M., & Vorst, T. (2005). Life after VaR. Journal of Derivatives, 13, 48-55.
http://dx.doi.org/10.3905/jod.2005.580517

[20]   Brooks, C., Clare, A. D., Dalle-Mulle, J. W., & Persand, G. (2005). A Comparison of Extreme Value Theory Approaches for Determining Value at Risk. Journal of Empirical Finance, 12, 339-352.
http://dx.doi.org/10.1016/j.jempfin.2004.01.004

[21]   Burns, P. (2005). The Quality of Value at Risk via Univariate GARCH. Working Paper, Burns Statistics.

[22]   Chen, C. W. S., Gerlach, R., Hwang, B. B. K., & McAller, M. (2012). Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-Day Range. International Journal of Forecasting, 28, 557-574.
http://dx.doi.org/10.1016/j.ijforecast.2011.12.004

[23]   Chernozhukov, V. (1999). Specification and Other Tests Processes for Quantile Regression. Stanford University, Mimeograph.

[24]   Christoffersen, P. F. (1998). Evaluating Interval Forecasts. International Economic Review, 39, 841-864.
http://dx.doi.org/10.2307/2527341

[25]   Danielsson, J., Hartmann, P., & de Vries, C. (1998). The Cost of Conservatism. Risk, 11, 101-103.

[26]   Danielsson, J., & de Vries, C. (2000). Value-at-Risk and Extreme Returns. Annales d’Economie et de Statistique, 60, 239-270.

[27]   Drzik, J. (2005). New Directions in Risk Management. Journal of Financial Econometrics, 3, 26-36.
http://dx.doi.org/10.1093/jjfinec/nbi007

[28]   Duffie, D., & Pan, J. (1997). An Overview of Value at Risk. Journal of Derivatives, 4, 7-49.
http://dx.doi.org/10.3905/jod.1997.407971

[29]   Engle, R. F., & Manganelli, S. (2004). CAViaR: Conditional Autoregressive Value at Risk by Regression Quantile. Journal of Business and Economic Statistics, 22, 367-381.
http://dx.doi.org/10.1198/073500104000000370

[30]   Fama, E. F. (1965). The Behaviour of Stock Market Prices. Journal of Business, 38, 34-105.
http://dx.doi.org/10.1086/294743

[31]   Giacomini, R., & Komunjer, I. (2005). Evaluation and Combination of Conditional Quantile Forecasts. Journal of Economic and Business Statistics, 23, 416-431.
http://dx.doi.org/10.1198/073500105000000018

[32]   Gourieroux, C., & Jasiak, J. (2008). Dynamic Quantile Models. Journal of Econometrics, 147, 198-205.
http://dx.doi.org/10.1016/j.jeconom.2008.09.028

[33]   Granger, C. W. J., White, H., & Kamstra, M. (1989). Interval Forecasting: An Analysis Based upon ARCH-Quantiles Estimators. Journal of Econometrics, 40, 87-96.
http://dx.doi.org/10.1016/0304-4076(89)90031-6

[34]   Gerlach, R., Chen, C. W. S., & Chan, N. Y. C. (2011). Bayesian Time-Varying Quantile Forecasting for Value-at-Risk in Financial Markets. Journal of Business and Economic Statistics, 23, 416-431.
http://dx.doi.org/10.1198/jbes.2010.08203

[35]   Guidolin, M., & Timmermann, A. (2006). Term Structure of Risk under Alternative Econometric Specifications. Journal of Econometrics, 131, 285-308.
http://dx.doi.org/10.1016/j.jeconom.2005.01.033

[36]   Haas, M., Mittnik, S., & Paolella, M. (2006). Value-at-Risk Prediction: A Comparison of Alternative Strategies. Journal of Financial Econometrics, 4, 53-89.

[37]   Huang, D., Yu, B., Lu, Z., Fabozzi, F. J., Focardi, S., & Fukushima, M. (2010). Index-Exciting CAViaR: A New Empirical Time-Varying Risk Model. Studies in Nonlinear Dynamics and Econometrics, 14, 1-24.
http://dx.doi.org/10.2202/1558-3708.1805

[38]   Huang, D., Yu, B., Fabozzi, F. J., & Fukushima, M. (2009). CAViaR-Based Forecast for Oil Price Risk. Energy Economics, 31, 511-518.
http://dx.doi.org/10.1016/j.eneco.2008.12.006

[39]   Hull, J., & White, A. (1998). Value-at-Risk When Daily Changes in Market Variables Are Not Normally Distributed. Journal of Derivatives, 5, 9-19.
http://dx.doi.org/10.3905/jod.1998.407998

[40]   Jeon, J., & Taylor, J. W. (2013). Using CAViaR Models with Implied Volatility for Value-at-Risk Estimation. Journal of Forecasting, 32, 62-74.
http://dx.doi.org/10.1002/for.1251

[41]   Jimenez-Martin, J. A. (2009). The Ten Commandments for Managing Value-at-Risk and the Basel II Accord. Journal of Economic Surveys, 23, 850-855.
http://dx.doi.org/10.1111/j.1467-6419.2009.00590.x

[42]   Jorion, P. (2000). Value at Risk (2nd ed.). New York: McGraw Hill.

[43]   Koenker, R., & Bassett, G. (1978). Regression Quantiles. Econometrica, 46, 33-50.
http://dx.doi.org/10.2307/1913643

[44]   Koenker, R., & Bassett, G. (1982). Robust Tests for Heteroskedasticity Based on Regression Quantiles. Econometrica, 50, 43-61.
http://dx.doi.org/10.2307/1912528

[45]   Koenker, R., & Zhao, Q. (1996). Conditional Quantile Estimation and Inference for ARCH Models. Econometric Theory, 12, 265-283.
http://dx.doi.org/10.1017/S0266466600007167

[46]   Kouretas, G. P., & Zarangas, L. (2005). Conditional Autoregressive Value-at-Risk by Regression Quantiles: Estimating Market Risk for Major Stock Market. Working Paper, Crete: Department of Economics, University of Crete.

[47]   Kuester, R. F., Mittnik, S., & Paolella, M. (2006). Value-at-Risk Prediction: A Comparison of Alternative Strategies. Journal of Financial Econometrics, 4, 53-89.
http://dx.doi.org/10.1093/jjfinec/nbj002

[48]   Longin, F. M. (2000). From VaR to Stress Testing: The Extreme Value Approach. Journal of Banking and Finance, 24, 1097-1130.
http://dx.doi.org/10.1016/S0378-4266(99)00077-1

[49]   Longin, F. M. (2001). Beyond the VaR. Journal of Derivatives, 8, 36-48.

[50]   Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. Journal of Business, 36, 394-419.

[51]   Manganelli, S., & Engle, R. F. (2004). A Comparison of Value-at-Risk Models in Finance. In G. Szego (Ed.), Risk Measures for the 21st Century (pp. 123-143). Chichester: John Wiley.

[52]   McAleer, M., & Da Veiga, B. (2008). Forecasting Value-at-Risk with a Parsimonious Portfolio Spillover GARCH (PS- GARCH) Model. Journal of Forecasting, 27, 1-19.
http://dx.doi.org/10.1002/for.1049

[53]   McAleer, M., Jimenez-Martin, J. A., & Perez-Amaral, T. (2013). Has the Basel Accord Improved Risk Management during the Global Financial Crisis? North American Journal of Economics and Finance, 26, 250-265.
http://dx.doi.org/10.1016/j.najef.2013.02.004

[54]   McNeil, A. J., & Frey, R. (2000). Estimation of Tail-Related Risk Measures for Heteroskedastic Financial Time Series: An Extreme Value Approach. Journal of Empirical Finance, 7, 271-300.
http://dx.doi.org/10.1016/S0927-5398(00)00012-8

[55]   McNeil, A. J., & Saladin, T. (2000). Developing Scenarios for Future Extreme Losses Using the POT Model. In P. Embrehts (Ed.), Extremes and Integrated Risk Management. London: RISK Publications.

[56]   Naftci, S. (2000). Value at Risk Calculations, Extreme Events, and Tail Estimation. Journal of Derivatives, 7, 23-37.
http://dx.doi.org/10.3905/jod.2000.319126

[57]   Pojarlev, M., & Polasek, W. (2000). Value at Risk Estimation for Stock Indices Using the Basle Committee Proposal Form 1995, Mimeograph.

[58]   Polasek, W., & Pojarlev, M. (2005). VaR Evaluations Based on Volatility Forecasts of GARCH Models, Mimeograph.

[59]   Portnoy, S. (1991). Asymptotic Behavior of Regression Quantiles in Non-Stationary Dependent Cases. Journal of Multivariate Analysis, 38, 100-113.
http://dx.doi.org/10.1016/0047-259X(91)90034-Y

[60]   RiskMetrics (1996). Technical Document. Morgan Guarantee Trust Company of New York.

[61]   Romero, P. A., Muela, S. B., & Martin, C. L. (2013). A Comprehensive Review of Value at Risk Methodologies. Fundacion De Las Cajas De Ahorros, Documento de Trabajo No 711/2013.

[62]   Rubia, A., & Sanchis-Marco, L. (2013). On Downside Risk Predictability through Liquidity and Trading Activity: A Dynamic Quantile Approach. International Journal of Forecasting, 29, 202-219.
http://dx.doi.org/10.1016/j.ijforecast.2012.09.001

[63]   Schaumburg, J. (2012). Predicting Extreme Value at Risk: Nonparametric Quantile Regression with Refinements from Extreme Value Theory. Computational Statistics and Data Analysis, 56, 4081-4096.
http://dx.doi.org/10.1016/j.csda.2012.03.016

[64]   Schwert, G. W. (1988). Why Does Stock Market Volatility Change over Time? Journal of Finance, 44, 1115-1153.
http://dx.doi.org/10.1111/j.1540-6261.1989.tb02647.x

[65]   Sener, E., Baronyan, S., & Ali Menguturk, L. (2012). Ranking the Predictive Performances of Value-at-Risk Estimation Methods. International Journal of Forecasting, 28, 849-873.
http://dx.doi.org/10.1016/j.ijforecast.2011.10.002

[66]   Taylor, S. J. (1986). Modelling Financial Time Series. New York: Wiley and Sons Ltd.

[67]   White, H. (1994). Estimation, Inference and Specification Analysis. Cambridge: Cambridge University Press.
http://dx.doi.org/10.1017/CCOL0521252806

[68]   White, H. (2000). A Reality Check for Data Snooping. Econometrica, 68, 1097-1126.
http://dx.doi.org/10.1111/1468-0262.00152

[69]   Yu, P. L. H., Li, W. K., & Jin, S. (2010). On Some Models for Value-at-Risk. Econometric Reviews, 29, 622-641.
http://dx.doi.org/10.1080/07474938.2010.481972

 
 
Top