Back
 JAMP  Vol.3 No.9 , September 2015
(f, p)-Asymptotically Lacunary Equivalent Sequences with Respect to the Ideal I
Abstract: In this study, we define (f, p)-Asymptotically Lacunary Equivalent Sequences with respect to the ideal I using a non-trivial ideal , a lacunary sequence , a strictly positive sequence , and a modulus function f, and obtain some revelent connections between these notions.
Cite this paper: Bilgin, T. (2015) (f, p)-Asymptotically Lacunary Equivalent Sequences with Respect to the Ideal I. Journal of Applied Mathematics and Physics, 3, 1207-1217. doi: 10.4236/jamp.2015.39148.
References

[1]   Freedman, A.R, Sember, J.J. and Raphel, M. (1978) Some Cesaro-Type Summability Spaces. Proceedings London Mathematical Society, 37, 508-520.
http://dx.doi.org/10.1112/plms/s3-37.3.508

[2]   Nakano, H. (1953) Concave Modulars. Journal of the Mathematical Society of Japan, 5, 29-49.
http://dx.doi.org/10.2969/jmsj/00510029

[3]   Connor, J.S. (1989) On Strong Matrix Summability with Respect to a Modulus and Statistical Convergence. Canadian Mathematical Bulletin, 32, 194-198.
http://dx.doi.org/10.4153/CMB-1989-029-3

[4]   Kolk, E. (1993) On Strong Boundedness and Summability with Respect to a Sequence Moduli. Tartu ülikooli Toimetised, 960, 41-50.

[5]   Maddox, I.J. (1986) Sequence Spaces Defined by a Modulus. Mathematical Proceedings of the Cambridge Philosophical Society, 100, 161-166.
http://dx.doi.org/10.1017/S0305004100065968

[6]   Öztürk, E. and Bilgin, T. (1994) Strongly Summable Sequence Spaces Defined by a Modulus. Indian Journal of Pure and Applied Mathematics, 25, 621-625.

[7]   Pehlivan, S. and Fisher, B. (1994) On Some Sequence Spaces. Indian Journal of Pure and Applied Mathematics, 25, 1067-1071.

[8]   Ruckle, W.H (1973) FK Spaces in Which the Sequence of Coordinate Vectors Is Bounded. Canadian Journal of Mathematics, 25, 973-978.
http://dx.doi.org/10.4153/CJM-1973-102-9

[9]   Marouf, M. (1993) Asymptotic Equivalence and Summability. International Journal of Mathematics and Mathematical Sciences, 16, 755-762.
http://dx.doi.org/10.1155/S0161171293000948

[10]   Patterson, R.F. (2003) On Asymptotically Statistically Equivalent Sequences. Demonstratio Mathematica, 36, 149-153.

[11]   Metin, B. and Selma, A. (2008) On δ-Lacunary Statistical Asymptotically Equivalent Sequences. Filomat, 22, 161-172.
http://dx.doi.org/10.2298/FIL0801161B

[12]   Basarir, M. and Altundag, S. (2011) On Asymptotically Equivalent Difference Sequences with Respect to a Modulus Function. Ricerche di Matematica, 60, 299-311.
http://dx.doi.org/10.1007/s11587-011-0106-0

[13]   Patterson, R.F. and Savas, E. (2006) On Asymptotically Lacunary Statistically Equivalent Sequences. Thai Journal of Mathematics, 4, 267-272.

[14]   Kostyrko, P., Salat, T. and Wilczynski, W. (2001) I-Convergence. Real Analysis Exchange, 26, 669-686.

[15]   Das, P., Savas, E. and Ghosal, S. (2011) On Generalizations of Certain Summability Methods Using Ideals. Applied Mathematics Letters, 24, 1509-1514.
http://dx.doi.org/10.1016/j.aml.2011.03.036

[16]   Dems, K. (2004) On I-Cauchy Sequences. Real Analysis Exchange, 30, 123-128.

[17]   Savas, E. and Gumus, H. (2013) A Generalization on Ι-Asymptotically Lacunary Statistical Equivalent Sequences. Journal of Inequalities and Applications, 2013, 270.

[18]   Kumar, V. and Sharma, A. (2012) Asymptotically Lacunary Equivalent Sequences Defined by Ideals and Modulus Function. Mathematical Sciences, 6, 1-5.

[19]   Kumar, V. and Mursaleen, M. (2003) On Ideal Analogue of Asymptotically Lacunary Statistical Equivalence of Sequences. Acta Universitatis Apulensis, 36, 109-119.

[20]   Bilgin, T. (2011) f-Asymptotically Lacunary Equivalent Sequences. Acta Universitatis Apulensis, 28, 271-278.

[21]   Connor, J.S. (1988) The Statistical and Strong p-Cesaro Convergence of Sequences. Analysis, 8, 47-63.
http://dx.doi.org/10.1524/anly.1988.8.12.47

[22]   Fast, H. (1951) Sur la convergence statistique. Colloquium Mathematicae, 2, 241-244.

[23]   Fridy, J.A. (1985) On Statistical Convergence. Analysis, 5, 301-313.
http://dx.doi.org/10.1524/anly.1985.5.4.301

[24]   Fridy, J.A. and Orhan, C. (1993) Lacunary Statistical Convergent. Pacific Journal of Mathematics, 160, 43-51.
http://dx.doi.org/10.2140/pjm.1993.160.43

[25]   Fridy, J.A. and Orhan, C. (1993) Lacunary Statistical Summability. Journal of Mathematical Analysis and Applications, 173, 497-504.
http://dx.doi.org/10.1006/jmaa.1993.1082

 
 
Top