AS  Vol.6 No.9 , September 2015
Assessing the Crop Growing Period According to the Climate Change Forecasts for Marina Baixa (SE Spain)
ABSTRACT
The present work aims to assess the likely effects of climate change on the length of growing period (LGP) of crops in Marina Baixa (SE, Spain). LGP can be assessed by a balance between preci- pitation and reference evapotranspiration. Less rainfall and an increased evapotranspiration, forecast by Global Climate Models (GCMs), are considered as a high risk for agriculture. This area is located in a semiarid climate region where water is a very limited resource. It is a typical example of areas where the agricultural sector has to compete for water with the tourism industry. In this context, by using observed and projected precipitation data set (model HadCM3, Scenario A2), calculating reference evapotranspiration (ETo), and applying the frequency analysis of a probability-type method, we estimated the growing period length in the observed period (1961-1990) and three 30-year future periods (2011-40, 2041-70 and 2071-99) in the study area. The results show a drop in annual precipitations (&#45 30%) and an increased ETo (+18%) towards the end of this century with respect to the observed period (mean annual rainfall: 356 mm; mean ETo: 1476 mm). The results also show a decrease in the number of decades (10 days) when precipitation exceeds half of the ETo, which means shorter growing periods as the 21st century advances. This expected reduction in growing period length towards the end of the present century will imply that many rainfed crops, like olives, almonds and cereals, will require a higher irrigation water supply to maintain suitable growth and performance levels. The results are an early warning to manage water resources in Marina Baixa in a sustainable way.

Cite this paper
Herrera, M. , Moutahir, H. , González, C. , Chirino, E. and Bellot, J. (2015) Assessing the Crop Growing Period According to the Climate Change Forecasts for Marina Baixa (SE Spain). Agricultural Sciences, 6, 1079-1088. doi: 10.4236/as.2015.69103.
References
[1]   IPCC (2007) Tercer Informe de Evaluación. Cambio Climático 2007, la base científica.

[2]   IPCC (2013) Informe de Evaluación. Cambio Climático 2013, la base científica.

[3]   Aber, J.D., Ollinger, S.V., Federer, C.A., Reich, P.B., Goulden, M.L., Kicklighter, D.W., Melillo, J.M. and Lathrop, R.G. (1995) Predicting the Effects of Climate Change on Water Yield and Forest Production in the Northeastern United States. Climate Research, 5, 207-222.
http://dx.doi.org/10.3354/cr005207

[4]   Churkina, G., Running, S.W., Schloss, A.L., and the Participants of the Potsdam NpP. Model Intercomparison (1999) Comparing Global Models of Terrestrial Net Primary Productivity (NPP): The Importance of Water Availability. Global Change Biology, 5, 46-55.
http://dx.doi.org/10.1046/j.1365-2486.1999.00006.x

[5]   Davi, H., Dufrêne, E., Francois, C. ,Le Maire, G., Loustau, D., Bosc, A. and Moors, E. (2006) Sensitivity of Water and Carbon Fluxes to Climate Changes from 1960 to 2100 in European Forest Ecosystems. Agricultural and Forest Meteorology, 141, 35-56.
http://dx.doi.org/10.1016/j.agrformet.2006.09.003

[6]   Ozenda, P. and Borel, J.-L. (2000) An Ecological Map of Europe: Why and How? Comptes Rendus de l’Académie des Sciences—Series III—Sciences de la Vie/Life Sciences, 323, 983-994.

[7]   Smith, J.B., et al. (2001) Vulnerability to Climate Change and Reasons for Concern: A Synthesis. In: McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., White, K.S., Eds., Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 913-967.

[8]   Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E. and Goodess, C.M. (2009) Climatic Changes and Associated Impacts in the Mediterranean Resulting from a 2 °C Global Warming. Global and Planetary Change, 68, 209-224.

[9]   Katz, R.W. and Brown, B.G. (1992) Extreme Events in a Changing Climate: Variability Is More Important than Averages. Climatic Change, 21, 289-302.
http://dx.doi.org/10.1007/BF00139728

[10]   Peña, J. (2007) Efectos ecológicos de los cambios de coberturas y usos del suelo en la Marina Baixa (Alicante). Tesis presentada en opción al título de Doctor en Ciencias, Universidad de Alicante, España.

[11]   Brunet, M., Casado, M.J., de Castro, M., Galán, P., López, J.A., Martín, J.M., Pastor, A., Petisco, E., Ramos, P., Ribalaygua, J., Rodríguez, E., Sanz, I. and Torres, L. (2009) Generación de escenarios regionalizados de cambio climático para España. Ministerio de Medio Ambiente y Medio Rural y Marino, Agencia Estatal de Meteorología, Madrid, 158 p.

[12]   Touhami, I., Chirino, E., Andreu, J.M., Sánchez, J.R., Moutahir, H. and Bellot, J. (2015) Assessment of Climate Change Impacts on Soil Water Balance and Aquifer Recharge in a Semiarid Region in South East Spain. Journal of Hydrology, 527, 619-629.
http://dx.doi.org/10.1016/j.jhydrol.2015.05.012

[13]   Samadi, S.Z., Sagareswar, G. and Tajiki, M. (2010) Comparison of General Circulation Models: Methodology for Selecting the Best GCM in Kermanshah Synoptic Station, Iran. International Journal of Global Warming, 2, 347-365.
http://dx.doi.org/10.1504/IJGW.2010.037590

[14]   Hargreaves, G.H. and Samani, Z.A. (1985) Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1, 96-99.
http://dx.doi.org/10.13031/2013.26773

[15]   Weibull, W. (1961) Fatigue Testing and Analysis of Results. Pergamon, Oxford, 225.

[16]   Gulinova, N.V. (1974) Métodos Agroclimáticos de Elaboración de las Observaciones. Guidrometeoizdat, Leningrado, 151 p.

[17]   Agriculture Organization of the United Nations, Soil Resources, Management & Conservation Service (1996) Agro-Ecological Zoning Guidelines No. 73. Food and Agriculture Organization.

[18]   Eldin, M. and Rojas, O. (1983) A System of Agroclimatic Zoning to Evaluate Climatic Potential for Crop Production. In: Cusak, D.F., Ed., Agroclimatic Information for Development: Reviving the Green Revolution, Westview, Boulder, 83-91.

[19]   Herrera, M.S. (2000) Contribución metodológica a la zonificación agroclimática de la caña de azúcar: Caracterización agroclimática de las áreas cañeras de la provincia La Habana. Tesis en opción al grado de Doctor en Ciencias Agrícolas. Universidad Agraria de la Habana, La Habana.

[20]   Herrera, M. and González, C. (2007) AgroClim: Un software para la ciencia y la docencia. Premio Relevanteen Fórum Provincial, Ciudad Habana, Cuba.

[21]   González, C.A., Moutahir, H., Herrera, M., Zayas, L., Touhami, I. and Bellot, J.F. (2012) Agroclim-Map, a GIS Application for Agroclimatic Systems Analysis. Proceedings of the International Conference of GIS Users, Taza GIS-Days, Morocco, 23-24 May 2012, 491-493.

[22]   Tatarinov, F. and Cienciala, E. (2009) Long-Term Simulation of the Effect of Climate Changes on the Growth of Main Central-European Forest Tree Species. Ecological Modelling, 220, 3081-3088.

[23]   IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, 1132 p.

[24]   Jones, R. (1996) Climate Change Scenarios for the Australian Region. CSIRO Atmospheric Research, Aspendale.

[25]   Whetton, P. (2001) Climate Change: Projections for Australia. CSIRO Atmospheric Research Report, Aspendale.

[26]   Tatarinov, F., Bochkarev, Y., Oltchev, A., Nadezhdina, N. and Cermak, J. (2005) Effect of Contrasting Water Supply on the Diameter Growth of Norway Spruce and Aspen in Mixed Stands: A Case Study from the Southern Russian Taiga. Annals of Forest Science, 62, 807-816.
http://dx.doi.org/10.1051/forest:2005086

[27]   Vygodskaya, N.N., et al. (2004) Long-Term Dynamics of Soil Moisture and Drying of Spruce Trees in Spruce Forests of the Southern Taiga. Russian Forest Sciences (Lesovedenie), 1, 3-22. (In Russian)

[28]   Alcamo, J., Dronin, N., Endejan, M., Golubev, G. and Kirilenko, A. (2007) A New Assessment of Climate Change Impacts on Food Production Shortfalls and Water Availability in Russia. Global Environmental Change, 17, 429-444.
http://dx.doi.org/10.1016/j.gloenvcha.2006.12.006

[29]   Finnerty, B. and Ramirez, J.A. (1995) Impact Assessment Study of Climate Change on Evapotranspiration and Irrigated Agriculture in the San Luis Valley, Colorado. Proceedings of the AWRA 31st Annual Conference and Symposia, Houston, 5-9 November 1995.
http://www.nws.noaa.gov/oh/hrl/papers/area/sanluisb.htm

[30]   Hidalgo, J.G., De Luis, M., Raventós, J. and Sánchez, J.R. (2003) Daily Rainfall Trend in the Valencia Region of Spain. Theoretical and Applied Climatology, 75, 117-130.

 
 
Top