Back
 FNS  Vol.6 No.12 , September 2015
Role of Cell Surface Structures in Biofilm Formation by Escherichia coli
Abstract: This study aims to understand the relationship between capabilities of Escherichia coli strains to form biofilm and serotype groups expressed on cell surface. Sixteen strains of E. coli were originally isolated from different food processing lines in different Moroccan cities. Strains serotyped based on their O (somatic), H (flagellar), and K (capsular) surface antigen profiles using different antiserums. Biofilm assays carried out in 96-well microtiter dishes using the method of O’Toole et al. Our results show that no clear relation observed between origin and serotype groups. In the other hand, we observed that not all studied strains were able to form biofilm. Furthermore, combination of antigens H40 and K11 appears to be involved in biofilm formation. In fact, the H antigen seems to be implicated in the placement of the bacterial cells near the surface and the K antigen may play a role in physicochemical interactions between bacteria and inert surface.
Cite this paper: Zahir, H. , Fatima, H. , Souad, L. , Mostafa, M. , Mostafa, E. and Hassan, L. (2015) Role of Cell Surface Structures in Biofilm Formation by Escherichia coli. Food and Nutrition Sciences, 6, 1160-1165. doi: 10.4236/fns.2015.612121.
References

[1]   Costerton, J.W., Stewart, P.S. and Greenbreg, E.P. (1999) Bacterial Biofilms a Common Cause of Persistent Infections. Science, 284, 1318-1322.
http://dx.doi.org/10.1126/science.284.5418.1318

[2]   Lawrence, J.R., Korber, D.R., Hoyle, B.D., Costerton, J.W. and Caldwell, D.E. (1991) Optical Sectioning of Microbial Biofilrns. Journal of Bacteriology, 173, 6558-6567.

[3]   Stoodley, P., De Beer, D. and Lewandowski, Z. (1994) Liquid Flow in Biofilm Systems. Applied and Environmental Microbiology, 60, 2711-2716.

[4]   Costerton, J.W., Lambe, D.W., Mayberry-Carson, K.J. and Tober-Meyer, B. (1987) Cell Wall Alterations in Staphylococci Growing in Situ in Experimental Osteomyelitis. Canadian Journal of Microbiology, 33, 142-150.
http://dx.doi.org/10.1139/m87-025

[5]   Frank, J.F. and Koffi, R.A. (1990) Surface-Adherent Growth of Listeria monocytogenes Is Associated with Increased Resistance to Surfactant Sanitizers and Heat. Journal of Food Protection, 53, 550-554.

[6]   Prakash, B., Veeregowda, B.M. and Krishnappa, G. (2003) Biofilms: A Survival Strategy of Bacteria. Current Science, 85, 9-10.

[7]   Pratt, L.A. and Kolter, R. (1998) Genetic Analysis of Escherichia coli Biofilm Formation—Roles of Flagella, Motility, Chemotaxis and Type I Pili. Molecular Microbiology, 30, 285-293.
http://dx.doi.org/10.1046/j.1365-2958.1998.01061.x

[8]   O’Toole, G.A. and Kolter, R. (1998) Initiation of Biofilm Formation in Pseudomonas fluorescens WCS365 Proceeds via Multiple, Convergent Signalling Pathways: A Genetic Analysis. Molecular Microbiology, 28, 449-461.
http://dx.doi.org/10.1046/j.1365-2958.1998.00797.x

[9]   An, Y.H., Dickinson, R.B. and Doyle, R.J. (2000) Mechanisms of Bacterial Adhesion and Pathogenesis of Implant and Tissue Infections. In: An, Y.H. and Friedman, R.J., Eds., Handbook of Bacterial Adhesion: Principles, Methods, and Applications, Humana Press, Totowa, 1-27.
http://dx.doi.org/10.1385/1-59259-224-4:1

[10]   Hamadi, F. and Latrache, H. (2008) Comparison of Contact Angle Measurement and Microbial Adhesion to Solvents for Assaying Electron Donor-Electron Acceptor (Acid-Base) Properties of Bacterial Surface. Colloids and Surfaces B: Biointerfaces, 65, 134-139.
http://dx.doi.org/10.1016/j.colsurfb.2008.03.010

[11]   Hamadi, F., Latrache, H., Zahir, H., Elghmari, A., Timinouni, M. and Ellouali, M. (2008) The Relation between Escherichia coli Surface Functional Groups’ Composition and Their Physicochemical Properties. Brazilian Journal of Microbiology, 39, 10-15.
http://dx.doi.org/10.1590/S1517-83822008000100003

[12]   Hamadi, F., Latrache, H., Zahir, H., Bengourram, J., Kouider, N., Elghmari, A. and Habbari, K. (2011) Evaluation of the Relative Cell Surface Charge by Using Microbial Adhesion to Hydrocarbon. Microbiology, 80, 488-491.
http://dx.doi.org/10.1134/S0026261711040072

[13]   Hamadi, F., Latrache, H., Zahir, H., El Abed, S., Ellouali, M. and Saad, I.K. (2012) The Relation between the Surface Chemical Composition of Escherichia coli and Their Electron Donor/Electron Acceptor (Acid-Base) Properties. Research Journal of Microbiology, 7, 32-40.
http://dx.doi.org/10.3923/jm.2012.32.40

[14]   Hamadi, F., Latrache, H., Asserne, F., Elabed, S., Zahir, H., Saad, I.K., et al. (2013). Quantitative Adhesion of Staphylococcus aureus on Stainless Steel Coated with Milk. Food and Nutrition Sciences, 4, 299-304.
http://dx.doi.org/10.4236/fns.2013.43040

[15]   Liu, Y.-Q., Liu, Y. and Tay, J.-H. (2004) The Effects of Extracellular Polymeric Substances on the Formation and Stability of Biogranules. Applied Microbiology and Biotechnology, 65, 143-148.
http://dx.doi.org/10.1007/s00253-004-1657-8

[16]   Singh, P.K., Parsek, M.R., Greenberg, E.P. and Welsh, M.J. (2002) A Component of Innate Immunity Prevents Bacterial Biofilm Development. Nature, 417, 552-555.
http://dx.doi.org/10.1038/417552a

[17]   Costerton, J.W. and Lappin-Scott, H.M. (1995) Introduction to Microbial Biofilms, In: Lappin-Scott, H.M. and Costerton, J.W., Ed., Microbial Biofilms, Cambridge University Press, Cambridge, 1-11.
http://dx.doi.org/10.1017/CBO9780511525353.002

[18]   Fux, C.A., Costerton, J.W., Stewart, P.S. and Stoodley, P. (2005) Survival Strategies of Infectious Biofilms. Trends in Microbiology, 13, 34-40.
http://dx.doi.org/10.1016/j.tim.2004.11.010

[19]   Beech, I. (2004) Biocorrosion: Towards Understanding Interactions between Biofilms and Metals. Current Opinion in Biotechnology, 15, 181-186.
http://dx.doi.org/10.1016/j.copbio.2004.05.001

[20]   Bechmann, R.T. and Eduvean, R.G.C. (2006) AFM Study of the Colonization of Stainless Steel by Aquabacterium Commune. International Biodeterioration & Biodegradation, 58, 112-118.
http://dx.doi.org/10.1016/j.ibiod.2006.06.008

[21]   Flemming, H., Neu, T.R. and Wozniak, D.J. (2007) The EPS Matrix: The “House of Biofilm Cells”. Journal of Bacteriology, 189, 7945-7947.

[22]   O’Toole, G., Kaplan, H.B. and Kolter, R. (2000) Biofilm Formation as Microbial Development. Annual Reviews of Microbiology, 54, 49-79.
http://dx.doi.org/10.1146/annurev.micro.54.1.49

[23]   Carpentier, B. and Cerf, O. (1993) Biofilms and Their Consequences, with Particular Reference to Hygiene in the Food Industry. Journal of Applied Bacteriology, 75, 499-511.
http://dx.doi.org/10.1111/j.1365-2672.1993.tb01587.x

[24]   Nadell, C.D., Xavier, J.B., Levin, S.A. and Foster, K.R. (2008) The Evolution of Quorum Sensing in Bacterial Biofilms. PLoS Biology, 6, e14.
http://dx.doi.org/10.1371/journal.pbio.0060014

[25]   Molin, S. (2003) Gene Transfer Occurs with Enhanced Efficiency in Biofilms and Induces Enhanced Stabilisation of the Biofilm Structure. Current Opinion in Biotechnology, 14, 255-261.
http://dx.doi.org/10.1016/S0958-1669(03)00036-3

[26]   Lewis, K. (2005) Persister Cells and the Riddle of Biofilm Survival. Biochemistry (Moscow), 70, 267-274.
http://dx.doi.org/10.1007/s10541-005-0111-6

[27]   Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., et al. (1997) The Complete Genome Sequence of Escherichia coli K-12. Science, 277, 1453-1462.

[28]   Blattner, F.R., Plunkett III, G., Bloch, C., Perna, N., Burland, V., Riley, M., Collado-Vides, J., Glasner, J., Rode, C., Mayhew, G., Gregor, J., Davis, N., Kirkpatrick, H., Goeden, M., Rose, D., Mau, B. and Shao, Y. (1997) The Complete Genome Sequence of Escherichia coli K-12. Science, 277, 1453-1462.
http://dx.doi.org/10.1126/science.277.5331.1453

[29]   Prigent-Combaret, C., Vidal, O., Dorel, C. and Lejeune, P. (1999) Abiotic Surface Sensing and Biofilm—Dependant Regulation of Gene Expression in Escherichia coli. Journal of Bacteriology, 184, 5993-6002.

[30]   Alen-Vercoe, E., Dibb-Fuller, M.P., Thorns, C.J. and Woodward, M.J. (1997) SEF17 Fimbriae Are Essential for the Convoluted Colonial Morphology of Salmonella enteritidis. FEMS Microbiology Letters, 153, 33-42.
http://dx.doi.org/10.1111/j.1574-6968.1997.tb10460.x

[31]   Karch, H., Heesemann, J., Laufs, R., O’brien, A.D., Tacket, C.O. and Levine, M.M. (1987) A Plasmid of Enterohemorrhagic Escherichia coli O157: H7 Is Required for Expression of a New Fimbrial Antigen and for Adhesion to Epithelial Cells. Infection and Immunity, 55, 455-461.

[32]   Pacheco, S.V., González, O.G. and Contreras, G.L.P. (1997) The Lom Gene of Bacteriophage λ Is Involved in Escherichia coli K12 Adhesion to Human Buccal Epithelial Cells. FEMS Microbiology Letters, 156, 129-132.
http://dx.doi.org/10.1111/j.1574-6968.1997.tb12717.x

[33]   Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P. and Dorel, C. (2001) Complex Regulatory Network Controls Initial Adhesion and Biofilm Formation in Escherichia coli via Regulation of the csgD Gene. Journal of Bacteriology, 183, 7213-7223.
http://dx.doi.org/10.1128/JB.183.24.7213-7223.2001

[34]   Walker, S.L., Redman, J.A. and Elimelech, M. (2004) Role of Cell Surface Lipopolysaccharides in Escherichia coli K12 Adhesion and Transport. Langmuir, 20, 7736-7746.
http://dx.doi.org/10.1021/la049511f

[35]   Qrskov, F. and Orskov, I. (1984) Serotyping of Escherichia coli. Methods in Microbiology, 14, 43-112.

[36]   O’Toole, G.A., Pratt, L.A., Watnick, P.I., Newman, D.K., Weaver, V.B. and Kolter, R. (1999) Genetic Approaches to Study of Biofilms. Methods in Enzymology, 310, 91-109.

[37]   El Ghmari, A., Latrache, H., Hamadi, F., El louali, M., El bouadili, A., Hakkou, A. and Bourlioux, P. (2002) Influence of Surface Cell Structures on Physicochemical Properties of Eshecherchia coli. Microbiologica, 25, 173-178.

 
 
Top