[1] David, C.W. and Gerald, B.S. (1993) Genetic Algorithm Solution of Economic Dispatch with Valve Point Loading. IEEE Transactions on Power Systems, 8, 1325-1332.
http://dx.doi.org/10.1109/59.260861
[2] Wheimin, L., Fusheng, C. and Mingtong, T. (2001) Non-Convex Economic Dispatch by Integrated Artificial Intelligence. IEEE Transactions on Power Systems, 16, 307-311.
http://dx.doi.org/10.1109/59.918303
[3] Hou, Y.H., Lu, L.J., Xiong, X.Y., et al. (2004) Enhanced Particle Swarm Optimization Algorithm and Its Application on Economic Dispatch of Power Systems. Proceedings of the CSEE, 24, 95-100. (In Chinese)
[4] Wang, S.J., Shahidehpour, S.M. and Kirschen, D.S. (1995) Short-Term Generation Scheduling with Transmission and Environmental Constraints Using an Augmented Lagrangian Relaxation. IEEE Transactions on Power Systems, 10, 1294-1301. http://dx.doi.org/10.1109/59.466524
[5] Fan, J.-Y. and Zhang, L. (1998) Real-Time Economic Dispatch with Line Flow and Emission Constrains Using Quadratic Programming. IEEE Transactions on Power Systems, 13, 320-325.
http://dx.doi.org/10.1109/59.667345
[6] Zhang, X.W. and Li, Y.J. (2006) Self-Adjusted Particle Swarm Optimization Algorithm Based Economic Load Dispatch of Power System. Power System Technology, 30, 8-13. (In Chinese)
[7] Tang, W. and Li, D.P. (2000) Chaotic Optimization for Economic Dispatch of Power Systems. Proceedings of the CSEE, 20, 36-40. (In Chinese)
[8] Kennedy, J. and Eberhart, R.C. (1995) Particle Swarm Optimization. Proceeding of the 1995 IEEE International Conference on Neural Network. Perth, 27 November-1 December 1995, 1942-1948.
http://dx.doi.org/10.1109/icnn.1995.488968
[9] Wooldridge, M. (2002) An Introduction to Multi-Agent System. Wiley, New York.
[10] Zhong, W.C., Liu, J., Xue, M.Z. and Jiao, L.C. (2004) A Multi-Agent Genetic Algorithm for Global Numerical Optimization. IEEE Transactions on Systems, Man, and Cybernetics, 34, 1128-1141.
http://dx.doi.org/10.1109/TSMCB.2003.821456
[11] Wang, X., Wang, X., Li, L.X., et al. (2013) Reactive Power Optimization for Wind Power System Based on Dynamic Cloud Evolutionary Particle Swarm Optimization. Power System Protection and Control, 41, 36-43. (In Chinese)
[12] Liu, H. and Liu, Z.G. (2015) An Improved Particle Swarm Algorithm Study on Optimization Model of Maintenance Schedules for Railway Traction Substations. Power System Protection and Control, 43, 87-94. (In Chinese)
[13] Ling, S.H., Lam, H.K., Leung, F.H.F. and Lee, Y.S. (2003) Improved Genetic Algorithm for Economic Load Dispatch with Valve-Point Loadings. The 29 Annual Conference of the IEEE Industrial Elec-tronics Society, 1, 442-447.
[14] Park, J.-B., Lee, K.-S., Shin, J.-R. and Lee, K.Y. (2003) Economic Load Dispatch for Non-Smooth Cost Functions Using Particle Swarm Optimization. 2003 IEEE Power Engineering Society General Meeting, 2, 938-943.
[15] Sinha, N., Chakrabarti, R. and Chattopadhyay, P.K. (2003) Evolutionary Programming Techniques for Economic Load Dispatch. IEEE Transactions on Evolutionary Computation, 7, 83-94.
http://dx.doi.org/10.1109/TEVC.2002.806788