MSA  Vol.6 No.9 , September 2015
Fabrication of Copper Wire Using Glyoxylic Acid Copper Complex and Laser Irradiation in Air
ABSTRACT
Preparation of a glyoxylic acid copper complex and fabrication of fine copper wire by CO2 laser irradiation in air to a thin film of that complex have been investigated. Irradiating laser to the complex thin film spin-coated on a glass substrate, thin film of metallic copper was fabricated in areas that were subjected to laser irradiation in air. The thickness of this thin copper film was approx. 30 to 40 nm, and as non-irradiated areas were etched and removed by a soluble solvent of the copper complex, fine copper wire with 200 μm width was formed by laser direct patterning. The resistivity of this thin copper film depended on the irradiation intensity of the laser and was 3.0 × 105 Ω·cm at 12 W intensity (sweep speed: 20 mm/s). This method enables the high-speed deposition of copper wiring in air by a printing process, indicating an inexpensive and useful process for fabricating copper wiring.

Cite this paper
Ohishi, T. and Kimura, R. (2015) Fabrication of Copper Wire Using Glyoxylic Acid Copper Complex and Laser Irradiation in Air. Materials Sciences and Applications, 6, 799-808. doi: 10.4236/msa.2015.69082.
References
[1]   Perelaer, J., Smith, P.J., Mager, D., Soltman, D., Volkman, S.K., Subramarian, V., Korvink, J.G. and Schubert, U.S. (2010) Printed Electronics. Journal of Materials Chemistry, 20, 8446-8453.
http://dx.doi.org/10.1039/c0jm00264j

[2]   Yokoyama, M. and Kamata, T. (2008) Advanced Science and Technology for Printable Organic Electronics. CMC Publishers.

[3]   Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., Kumai, R. and Hasegawa, T. (2011) Inkjet Printing of Single-Crystal Films. Nature, 475, 364-367.
http://dx.doi.org/10.1038/nature10313

[4]   Fukuda, K., Sekina, T., Kobayashi, Y., Takeda, Y., Shimizu, M., Yamashita, N., Kumaki, D., Itoh, M., Nagaoka, M., Toda, T., Saito, S., Kurihara, M., Sakamoto, M. and Tokita, S. (2012) Organic Integrated Circuits Using Room-Tem-perature Sintered Silver Nanoparticles as Printed Electrodes. Organic Electronics, 13, 3296-3301.
http://dx.doi.org/10.1016/j.orgel.2012.09.028

[5]   Tokuno, T., Nogi, M., Karakawa, M., Jiu, J.T.T., Nge, Y., Aso, K. and Suganuma, K. (2011) Fabrication of Silver Nanowire Transparent Electrodes at Room Temperature. Nano Research, 4, 1215-1222.
http://dx.doi.org/10.1007/s12274-011-0172-3

[6]   Hosel, M. and Krebs, F.C. (2012) Large-Scale Roll-to-Roll Photonic Sintering of Flexo Printed Silver Nanoparticle Electrodes. Journal of Materials Chemistry, 22, 15683-15688.
http://dx.doi.org/10.1039/c2jm32977h

[7]   Nakamoto, M., Kashiwagi, Y. and Yamamoto, M. (2005) Synthesis and Size Regulation of Gold Nanoparticles by Controlled Thermolysis of Ammonium Gold(I) Thiolates in the Absence or Presence of Amines. Inorganica Chimica Acta, 358, 4229-4236.
http://dx.doi.org/10.1016/j.ica.2005.03.037

[8]   Suganuma, K., Sakamoto, S., Kagami, N., Wakuda, D., Kim, K.S. and Nogi, M. (2012) Low-Temperature Low-Pres-sure Die Attach with Hybrid Silver Particle Paste. Microelectronics Reliability, 52, 375-380.
http://dx.doi.org/10.1016/j.microrel.2011.07.088

[9]   Morita, T., Ide, E., Yasuda, Y., Hirose, A. and Kobayashi, K.F. (2008) Study of Bonding Technology Using Silver Nanoprticles. Japanese Journal of Applied Physics, 47, 6615.
http://dx.doi.org/10.1143/JJAP.47.6615

[10]   Perelaer, J., Abbel, R., Wtinscher, S., Jani, R., van Lammeren, T. and Schubert, U.S. (2012) Roll-to-Roll Compatible Sintering of Inkjet Printed Features by Photonic and Microwave Exposure. Advanced Materials, 24, 2620.
http://dx.doi.org/10.1002/adma.201104417

[11]   Kim, Y., Yoo, B.W., Anthony, J.E. and Park, S.K. (2012) Controlled Deposition of a High-Performance Small-Molecule Organic Single-Crystal Transistor Array by Direct Inkjet Printing. Advanced Materials, 24, 497-502.
http://dx.doi.org/10.1002/adma.201103032

[12]   Choi, Y., Lee, J.H., Kim, S.J., Yoon, D.H. and Byun, Y.H. (2012) Highly Conductive Polymer-Decorated Cu Electrode Film Printed on Glass Substrates with Novel Precursor-Based Ink and Paste. Journal of Materials Chemistry, 22, 3624.
http://dx.doi.org/10.1039/c2jm15124c

[13]   Ryu, J.G., Kim, H.S. and Hahn, H.T. (2011) Reactive Sintering of Copper Nanoparticles Using Intense Pulsed Light for Printed Electronics. Journal of Electronic Materials, 40, 42-50.
http://dx.doi.org/10.1007/s11664-010-1384-0

[14]   Ishizaki, T. and Watanabe, R. (2012) A New One-Pot Method for the Synthesis of Cu Nanoparticles for Low Temperature Bonding. Journal of Materials Chemistry, 22, 25198-25206.
http://dx.doi.org/10.1039/c2jm34954j

[15]   Wang, B.Y., Yoo, T.H., Song, Y.W., Lim, D.S. and Oh, Y.J. (2013) Cu Ion Ink for a Flexible Substrate and Highly Conductive Patterning by Intensive Pulsed Light Sintering. Applied Materials & Interfaces, 5, 4113-4119.

[16]   Araki, T., Sigahara, T., Jiu, J., Nagao, S., Nogi, M., Koga, H., Uchida, H., Shinozaki, K. and Suganuma, K. (2013) Cu Salt Ink Formulation for Printed Electronics Using Photonic Sintering. Langmuir, 29, 11192-11197.
http://dx.doi.org/10.1021/la402026r

[17]   Nakamoto, K. (1963) Infrared Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, Inc., New York.

[18]   Bellamy, L.J. (1966) Infrared Spectra of Complex Compounds. Methuen & Co, London.

[19]   Buffat, P.H. and Borrel, J.P. (1976) Size Effect on the Melting Temperature of Gold Particles. Physical Review A, 13, 2287-2298.
http://dx.doi.org/10.1103/PhysRevA.13.2287

[20]   Li, Y., Moon, K.S. and Wong, C.P. (2006) Enhancement of Electrical Property of Anisotropically Conductive Adhesives (ACAs) Joints via Low Temperature Sintering. Journal of Applied Polymer Science, 99, 1665-1673.
http://dx.doi.org/10.1002/app.22509

 
 
Top