ABB  Vol.6 No.9 , September 2015
Online Effective Identification of Glycopeptide Using Liquid Chromatography Combined with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS)*
Abstract: The detailed glycan structural analysis of glycoprotein is amenable to glycopeptide enrichment. Here, we develop a simple, effective and economical approach to enrich glycopeptides from proteolytically digested peptide mixtures by chromatographic column packed with graphite carbon and activated charcoal (G/A-column). Glycopeptide from ovalbumin was efficiently enriched by homemade G/A-column using liquid chromatography and the structure of glycopeptide was obtained by tandem mass spectrometry using Fourier transform ion cyclotron resonance mass spectrometry. The results in this study demonstrate that G/A-column can be used to enrich N-glycolpeptides and be benefit for online identification of glycopeptide using LC-MS.
Cite this paper: Xin, L. , Hou, L. , Zhou, Y. , Wang, H. and Yu, H. (2015) Online Effective Identification of Glycopeptide Using Liquid Chromatography Combined with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS)*. Advances in Bioscience and Biotechnology, 6, 624-628. doi: 10.4236/abb.2015.69065.

[1]   Min, J.Z., Kurihara, T., Hirata, A., Toyo’oka, T. and Inagaki, S. (2009) Identification of N-Linked Oligosaccharide Labeled with 1-Pyrenesulfonyl Chloride by Quadrupole Time-of-Flight Tandem Mass Spectrometry after Separation by Micro- and Nanoflow Liquid Chromatography. Biomedical Chromatography, 23, 912-921.

[2]   Kurihara, T., Min, J.Z., Hirata, A., Toyo’oka, T. and Inagaki, S. (2009) Rapid Analysis of N-Linked Oligosaccharides in Glycoproteins (Ovalbumin, Ribonuclease B and Fetuin) by Reversed-Phase Ultra-Performance Liquid Chromatography with Fluorescence Detection and Electrospray Ionization Time-of-Flight Mass Spectrometry. Biomedical Chromatography, 23, 516-523.

[3]   Harvey, D.J. (2005) Proteomic Analysis of Glycosylation: Structural Determination of N- and O-Linked Glycans by Mass Spectrometry. Expert Review of Proteomics, 2, 87-101.

[4]   Morelle, W., Faid, V., Chirat, F. and Michalski, J.C. (2009) Analysis of N- and O-Linked Glycans from Glycoproteins Using MALDI-TOF Mass Spectrometry. Methods in Molecular Biology, 534, 5-21.

[5]   Kawasaki, N., Toh, S., Ohta, M. and Hayakawa, T. (2003) Microanalysis of N-Linked Oligosaccharides in a Glycoprotein by Capillary Liquid Chro-matography/Mass Spectrometry and Liquid Chromatography/Tandem Mass Spectrometry. Analytical Biochemistry, 316, 15-22.

[6]   Itoh, S., Kawasaki, N., Hashii, N., Harazono, A., Matsuishi, Y., Hayakawa, T. and Kawanishi, T. (2005) N-Linked Oligosaccharide Analysis of Rat Brain Thy-1 by Liquid Chromatography with Graphitized Carbon Column/Ion Trap-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry in Positive and Negative Ion Modes. Journal of Chromatography A, 1103, 296-306.

[7]   Ruhaak, L.R., Deelder, A.M. and Wuhrer, M. (2009) Oligosaccharide Analysis by Graphitized Carbon Liquid Chromatography-Mass Spectrometry. Analytical and Bioanalytical Chemistry, 394, 163-174.

[8]   El Bahri, L. (2008) Pharm Profile: Activated Charcoal. Compendium on Continuing Education for the Practising Veterinarian, 30, 596-598.

[9]   Larsen, M.R., Hojrup, P. and Roepstorff, P. (2005) Characterization of Gel-Separated Glycoproteins Using Two-Step Proteolytic Digestion Combined with Sequential Microcolumns and Mass Spectrometry. Molecular & Cellular Proteomics, 4, 107-119.

[10]   Larsen, M.R., Cordwell, S.J. and Roepstorff, P. (2002) Graphite Powder as an Alternative or Supplement to Reversed-Phase Material for Desalting and Concentration of Peptide Mixtures Prior to Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry. Proteomics, 2, 1277-1287.<1277::AID-PROT1277>3.0.CO;2-P

[11]   Werhahn, W. and Braun, H.P. (2002) Biochemical Dissection of the Mitochondrial Proteome from Arabidopsis thaliana by Three-Dimensional Gel Electrophoresis. Electrophoresis, 23, 640-646.<640::AID-ELPS640>3.0.CO;2-F

[12]   Mortz, E., Vorm, O., Mann, M. and Roepstorff, P. (1994) Identification of Proteins in Polyacrylamide Gels by Mass Spectrometric Peptide Mapping Combined with Database Search. Biological Mass Spectrometry, 23, 249-261.

[13]   Blake, T.A., Williams, T.L., Pirkle, J.L. and Barr, J.R. (2009) Targeted N-Linked Glycosylation Analysis of H5N1 Influenza Hemagglutinin by Selective Sample Preparation and Liquid Chromatography/Tandem Mass Spectrometry. Analytical Chemistry, 81, 3109-3118.

[14]   Arnold, J.N., Wormald, M.R., Sim, R.B., Rudd, P.M. and Dwek, R. (2007) The Impact of Glycosylation on the Biological Function and Structure of Human Immunoglobulins. Annual Review of Immunology, 25, 21-50.

[15]   Yu, L., Li, X., Guo, Z., Zhang, X. and Liang, X. (2009) Hydrophilic Interaction Chromatography Based Enrichment of Glycopeptides by Using Click Maltose: A Matrix with High Selectivity and Glycosylation Heterogeneity Coverage. Chemistry, 15, 12618-12626.