JMP  Vol.6 No.11 , September 2015
Left Chiral Solutions for the Hydrogen Atom of the Wave Equation for Electron + Neutrino
ABSTRACT
The resolution of our wave equation for electron + neutrino is made in the case of the H atom. From two non-classical potentials, we get chiral solutions with the same set of quantum numbers and the same energy levels as those coming from the Dirac equation for the lone electron. These chiral solutions are available for each electronic state in any atom. We discuss the implications of these new potentials.

Cite this paper
Daviau, C. and Bertrand, J. (2015) Left Chiral Solutions for the Hydrogen Atom of the Wave Equation for Electron + Neutrino. Journal of Modern Physics, 6, 1647-1656. doi: 10.4236/jmp.2015.611166.
References
[1]   Dirac, P.A.M. (1928) Proceedings of the Royal Society of London, 117, 610-624.
http://dx.doi.org/10.1098/rspa.1928.0023

[2]   Darwin, C.G. (1928) Proceedings of the Royal Society of London, 118, 554.

[3]   Daviau, C. and Bertrand, J. (2014) Journal of Modern Physics, 5, 1001-1022.
http://dx.doi.org/10.4236/jmp.2014.511102

[4]   Daviau, C. and Bertrand, J. (2014) Journal of Modern Physics, 5, 2149-2173.
http://dx.doi.org/10.4236/jmp.2014.518210

[5]   Daviau, C. (1993) Equation de Dirac non linéaire. Ph.D. Thesis, Université de Nantes, Nantes.

[6]   Daviau, C. (2013) Advances in Imaging and Electron Physics, 179, 1-137.
http://dx.doi.org/10.1016/B978-0-12-407700-3.00001-6

[7]   Daviau, C. and Bertrand, J. (2014) New Insights in the Standard Model of Quantum Physics in Clifford Algebra. Je Publie, Pouillé-les-Coteaux.
http://hal.archives-ouvertes.fr/hal-00907848

[8]   Daviau, C. (2015) Advances in Applied Clifford Algebras, 25.

[9]   Daviau, C. and Bertrand, J. (2015) The Standard Model of Quantum Physics in Clifford Algebra. World Science Publishing.

[10]   Krüger, H. (1991) New Solutions of the Dirac Equation for Central Fields. In: Hestenes, D. and Weingartshofer, A., Eds., The Electron, Kluwer, Dordrecht.
http://dx.doi.org/10.1007/978-94-011-3570-2_4

[11]   Daviau, C. (1997) Advances in Applied Clifford Algebras, 7, 175-194.

[12]   Socroun, T. (2015) Advances in Applied Clifford Algebras, 25.
http://dx.doi.org/10.1007/s00006-015-0558-5

 
 
Top