Back
 AJPS  Vol.6 No.14 , September 2015
Cytochemical, Structural and Ultrastructural Characterization of Tetrasporogenesis in Bostrychia radicans (Ceramiales, Rhodophyta) from the Mangroves of Itacorubi and Rio Ratones, Santa Catarina, Brazil
Abstract: Little is known about the morphology and location of macromolecules, especially proteins and carbohydrates, in vegetative and reproductive structures of mangrove species, including Bostrychia radicans. Therefore, to gain a better understanding of tetrasporogenesis in B. radicans, cytochemical, structural and ultrastructual analyses were performed. Thalli were collected from mangroves in Florianópolis, Santa Catarina, Brazil. Fertile branches were fixed and processed for light microscopy (LM), confocal microcopy and transmission electron microscopy (TEM) observations. The LM sections were stained with toluidine blue, periodic acid-Schiff and Coomassie brilliant blue. Tetrasporogenesis occurs in the pericentral cells of the terminal branches. This process is initially characterized by an increase in cell volume, resulting from the proliferation of organelles. The young tetrasporangia remain connected to the basal cell by pit connections. After a considerable increase in volume, the tetrasporocytes divide tetrahedrally, giving rise to haploid spores. During this process, there is an increasing production of starch grains, causing the organelles to group. As the organelles proliferate, the plasma membrane undergoes simultaneous invaginations toward the tetrasporangium center. The most conspicuous organelle throughout tetrasporogenesis was the Golgi complex. Polysaccharidic components are predominant in the tetrasporangium cell wall throughout tetrasporogenesis. Although protein components prevail in the cytoplasm of younger tetrasporangia, there is a predominance of reserve material with maturation. In the initial phase, there is an increase in the number of chloroplasts and a significant increment of Golgi bodies which contribute to the formation of the amorphous portion of the cell wall and possibly the biosynthesis of starch grains.
Cite this paper: Rover, T. , Simioni, C. , Ouriques, L. , Bouzon, Z. (2015) Cytochemical, Structural and Ultrastructural Characterization of Tetrasporogenesis in Bostrychia radicans (Ceramiales, Rhodophyta) from the Mangroves of Itacorubi and Rio Ratones, Santa Catarina, Brazil. American Journal of Plant Sciences, 6, 2393-2404. doi: 10.4236/ajps.2015.614242.
References

[1]   Fortes, A.C.M. (1992) Estudo taxonômico e aspectos ecológicos das Rhodophytano manguezal da Ilha de Santos (Complexo Estuarino Piaui—Fundo_Real, Sergipe. Disertation, Univerdidade Federal Rural de Pernambuco.

[2]   Bouzon, Z.L. and Ouriques, L.C. (1999) Occurrence and Distribution of Bostrychia and Caloglossa (Rhodophyta, Ceramiales) in the Ratones River Mangrove, Florianópolis—SC, Brazil. ínsula, 28, 43-52.

[3]   Zuccarello, C.G. and West, J.A. (1995) Hybridization Studies in Bostrychia. 1: B. radicans (Rhodomelaceae, Rhodophyta) from Pacific and Atlantic North America. Phycological Research, 43, 233-240.
http://dx.doi.org/10.1111/j.1440-1835.1995.tb00029.x

[4]   Karsten, U., West, J.A., Zuccarello, G. and Kirst, G.O. (1994) Physiological Ecotypes in the Marine Alga Bostrychia radicans (Ceramiales, Rhodophyta) from the East Coast of the U.S.A. Journal of Phycology, 30, 174-182.
http://dx.doi.org/10.1111/j.0022-3646.1994.00174.x

[5]   Kim, G.H., Shim, J.B., Klochkova, T.A., West, J.A. and Zuccarello, G.C. (2008) The Utility of Proteomics in Algal Taxonomy: Bostrychia radican Moritziana (Rhodomelaceae, Rhodophyta) as a Model Study. Journal of Phycology, 44, 1519-1528.
http://dx.doi.org/10.1111/j.1529-8817.2008.00592.x

[6]   Zuccarello, G.C. and West, J.A. (2003) Multiple Cryptic Species: Molecular Diversity and Reproductive Isolation in the Bostrychia radicans/B. moritziana Complex (Rhodomelaceae, Rhodophyta) with Focus on North American Isolates. Journal of Phycology, 39, 948-959.
http://dx.doi.org/10.1046/j.1529-8817.2003.02171.x

[7]   Hadlich, R.M. and Bouzon, Z.L. (1985) Contribuição ao levantamento taxonômico das algas marinhas betônicas so mangue do Itacorubi—Florianópolis—Ilha de Santa Catarina—Brasil—II Rhodophyta. ínsula, 15, 89-116.

[8]   McCully, M. (1970) The Histological Localization of the Structural Polysaccharides of Seaweeds. Annals of the New York Academy of Sciences, 175, 702-711.
http://dx.doi.org/10.1111/j.1749-6632.1970.tb45186.x

[9]   Tripodi, G. (1971) The Fine Structure of the Cystocarp in the Red Alga Polysiphonia sertularioides (Grat.) J. Ag. Journal of Submicroscopic Cytology, 3, 71-79.

[10]   Ramarao, K.R. (1970) Studies on Growth Cycle Anphycocolloid Corente in Hypnea musciformis (Wulf) Lamouroux. Botanica Marina Berlin, 13, 163-165.

[11]   Saito, R.M. and Oliveira, E.C. (1990) Chemical Screening of Brazilian Marine Algae Producing Carrageenans. Hydrobiologia, 204-205, 585-588.
http://dx.doi.org/10.1007/BF00040291

[12]   Diannelidis, B.E. and Kristen, U. (1988) Comparative Histochemical Studies of Reproductive and Gametophytic Tissue of Marine Red Algae by Means of Fluorescent and Light Microscopy. Botanica Marina, 31, 163-170.
http://dx.doi.org/10.1515/botm.1988.31.2.163

[13]   Bouzon, Z.L. (2006) Histoquímica e ultra-estrutura da ontogênese dos tetrasporangios de Hypnea musciformis (Wulfen) J. V. Lamour. (Gigartinales, Rhodophyta). Revista Brasileira de Botanica, 29, 229-238.
http://dx.doi.org/10.1590/S0100-84042006000200004

[14]   Kugrens, P. and West, J.A. (1972) Ultrastructure of Tetrasporogenesis the Parasitic Red Alga Levringiela gardneri (Setchell) Kylin. Phycologia, 8, 370-383.

[15]   Scott, J. and Dixon, P.S. (1973) Ultrastructure of Tetrasporogenesis in the Marine Red Alga Ptilota hypnoides. Journal of Phycology, 9, 29-46.
http://dx.doi.org/10.1111/j.0022-3646.1973.00029.x

[16]   Pueschel, C.M. (1979) Ultrastructure of Tetrasporogenesis in Palmaria palmata (Rhodophyta). Journal of Phycology, 15, 409-424.
http://dx.doi.org/10.1111/j.1529-8817.1979.tb00713.x

[17]   Pueschel, C.M. (1980) Evidence for Two Classes of Microbodies in Meiocytes of the Red Algae Palmaria palmate. Protoplasma, 104, 273-282.
http://dx.doi.org/10.1007/BF01279772

[18]   Santisi, S. and De Masi, F. (1981) An Electron Microscopic Study on Tetrasporogenesis of the Parasitic Red Alga Erythrocystis montagnei (Der. and Sol.) Silva. Cytobios, 31, 163-178.

[19]   Pueschel, C.M. (1982) Ultrastructural Observation of Tetrasporangia and Conceptacles in Hildenbrandia (Rhodophyta, Hildenbrandiales). British Phycological Journal, 17, 333-341.
http://dx.doi.org/10.1080/00071618200650331

[20]   Vesk, M. and Borowitzka, M. (1984) Ultraestructure of Tetrasporogenesis in the Coralline Alga Haliptilon cuvieri (Rhodophyta). Journal of Phycology, 20, 501-515.
http://dx.doi.org/10.1111/j.0022-3646.1984.00501.x

[21]   Tsekos, I., Schnepf, E. and Makrantonakis, A. (1985) The Ultrastructure of Tetrasporogenesis in the Marine Red Alga Chondria tenuissima (Good. Et Woodw.) (Ceramiales, Rhodomelaceae). Annals of Botany, 55, 607-619.

[22]   Delivopoulos, S.G. (2002) Ultrastructure of Trichoblasts in the Red Alga Osmundea spectabilis var. spectabilis (Rhodomelaceae, Ceramiales). European Journal of Phycology, 37, 329-338.
http://dx.doi.org/10.1017/S0967026202003748

[23]   Delivopoulos, S.G. (2004) Ultrastructure of Tetrasporogenesis in the Red Alga Rhodymenia californica var. attenuate (Rhodymeniaceae, Rhodymeniales, Rhodophyta). Botanica Marina, 47, 222-230.
http://dx.doi.org/10.1515/BOT.2004.023

[24]   Bouzon, Z.L., Miguens, F. and Oliveira, E.C. (2000) Male Gametogenesis in the Red Algae Gracilaria and Gracilariopsis (Rhodophyta, Gracilariales). Cryptogamie Algologie, 21, 33-47.
http://dx.doi.org/10.1016/S0181-1568(00)00103-3

[25]   Gahan, P.B. (1984) Plant Histochemistry and Cytochemistry: An Introduction. Academic Press, London.

[26]   Gordon, E.M. and Mccandless, E.L. (1973) Ultrastructure and Histochemistry of Chondrus crispus Stack. Proceedings of Nova Scotia Institute Science, 27, 111-133.

[27]   Gant, E. (1980) Handbook of Phycological Methods. Phycological Societey of America, London.

[28]   Sheahan, M.B., Staiger, C.J., Rose, R.J. and McCurdy, D.W. (2004) A Green Fluorescent Protein Fusion to Actin-Binding Domain 2 of Arabidopsis Fimbrin Highlights New Features of a Dynamic Actin Cytoskeleton in Live Plant Cells. Plant Physiology, 136, 3968-3978.
http://dx.doi.org/10.1104/pp.104.049411

[29]   Hepler, P.K. and Gunning, B.E.S. (1998) Confocal Fluorescence Microscopy of Plant Cells. Protoplasma, 201, 121-157.
http://dx.doi.org/10.1007/BF01287411

[30]   Reynolds, E.S. (1963) The Use of Lead Citrate at High pH as an Electron-Opaque Stain in Electron Microscopy. Journal Cell Biology, 17, 208-212.
http://dx.doi.org/10.1083/jcb.17.1.208

[31]   Carvalho, L.R. and Roque, N. (1996) Fenóis halogenados e/ou sulfatados de macroalgas marinhas. Química Nova, 23, 757-763.
http://dx.doi.org/10.1590/S0100-40422000000600009

[32]   Claire, J.W. and Dawes, C. (1976) An Autoradiographic and Histochemical Localization of Sulfated Polysaccharides in Eucheuma nudum (Rhodophyta). Journal of Phycology, 12, 368-375.

[33]   McDonald, K. (1972) The Ultrastructure of Mitosis in the Marine Red Alga Membranoptera platyphylla. Journal of Phycology, 8, 156-166.
http://dx.doi.org/10.1111/j.1529-8817.1972.tb01556.x

[34]   Pueschel, C.M. (1990) Cell Structure. In: Cole, K.M. and Sheath, R.G., Eds., Biology of the Red Algae, Cambridge University Press, New York, 517 p.

 
 
Top