[1] International Water Management Institute (IWMI) (2010) Wastewater Irrigation and Health: Assessing and Mitigating Risk in Low-Income Countries. Earthscan, London.
[2] Kêdowidé, C.M.G., Sedogo, M.P. and Cissé, G. (2010) Dynamique spatio temporelle de l’agriculture urbaine à Ouaga-dougou: Cas du Maraîchage comme une activité montante de stratégie de survie. Vertigo—La Revue Electronique en Sciences de l’Environnement, 10, [En Ligne].
http://vertigo.revues.org/10312
[3] Friedle, R.E. and Hadari, M. (2006) Economic Feasibility of On-Site Greywater Reuse in Multi-Storey Building. Desalination, 190, 221-234.
http://gwri.technion.ac.il/pdf/gwri_abstracts/2006/57.pdf
http://dx.doi.org/10.1016/j.desal.2005.10.007
[4] Winward, G.P., Avery, L.M., Frazer-Williams, R., Pidou, M., Jeffrey, P., Stephenson, T. and Jefferson, B. (2008) A Study of the Microbial Quality of Greywater and an Evaluation of Treatment Technologies for Reuse. Ecological Engineering, 32, 187-197.
http://www.sciencedirect.com/science/article/pii/S092585740700211X
http://dx.doi.org/10.1016/j.ecoleng.2007.11.001
[5] Tarchitzky, J., Lerner, O., Shani, U., Arye, G., Lowengart-Aycicegi, A., Brener, A. and Chen, Y. (2007) Water Distribution Pattern in Treated Wastewater Irrigated Soils: Hydrophobicity Effect. European Journal of Soil Science, 58, 573-588.
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2389.2006.00845.x/abstract
http://dx.doi.org/10.1111/j.1365-2389.2006.00845.x
[6] Travis, M.J., Wiel-Shafran, A., Weisbrod, N., Adar, E. and Gross, A. (2010) Greywater Reuse for Irrigation: Effect on Soil Properties. Science of the Total Environment, 408, 2501-2508.
http://www.sciencedirect.com/science/article/pii/S0048969710002524
http://dx.doi.org/10.1016/j.scitotenv.2010.03.005
[7] Park, J.B.K. and Craggs, R.J. (2010) Wastewater Treatment and Algal Production in High Rate Algal Ponds with Carbon Dioxide Addition. Water Science and Technology, 63, 633-639.
http://www.ncbi.nlm.nih.gov/pubmed/20150699
http://dx.doi.org/10.2166/wst.2010.951
[8] Craggs, R.J., Heubeck, S., Lundquist, T.J. and Benemann, J.R. (2011) Algae Biofuel from Wastewater Treatment High Rate Algal Ponds. Water Science and Technology, 63, 660-665.
http://www.ncbi.nlm.nih.gov/pubmed/21330711
http://dx.doi.org/10.2166/wst.2011.100
[9] Sukias, J.P.S. and Craggs, R.J. (2011) Digestion of Wastewater Pond Microalgae and Inhibition from Ammonium and Alum. Water Science and Technology, 63, 835-840.
http://www.ncbi.nlm.nih.gov/pubmed/21411930
http://dx.doi.org/10.2166/wst.2011.101
[10] Nacir, S., Ouazzani, N., Vasel, J.L., Jupsin, H. and Mandi, L. (2010) Traitement des eaux usées domestiques par un chénal algal à haut rendement (CAHR) agité par air lift sous climat semi-aride. Revue des sciences de l’eau/Journal of Water Science, 23, 57-72.
http://www.erudit.org/revue/rseau/2010/v23/n1/038925ar.html?vue=resume
[11] Park, J.B.K., Craggs, R.J. and Shilton, A.N. (2011) Wastewater Treatment High Rate Algal Ponds for Biofuel Production. Bioresource Technology, 102, 35-42.
http://www.sciencedirect.com/science/article/pii/S0960852410011636
http://dx.doi.org/10.1016/j.biortech.2010.06.158
[12] Kenfack, S. (2006) Helio-Photocatalytic Enhancement of the Biodegradation of Biorecalcitrant Pollutants in Water: Physicochemical and Technical Aspects. PhD Thesis, EPFL, Lausanne.
[13] American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF) (1998) Standard Methods for the Examination of Water and Wastewater. 20th Edition, APHA/ AWWA/WEF, Washington DC.
[14] Park, J.B.K., Craggs, R.J. and Shilton, A.N. (2011) Recycling Algae to Improve Species Control and Harvest Efficiency from a High Rate Algal Pond. Water Research, 45, 6637-6648.
http://www.sciencedirect.com/science/article/pii/S0043135411005720
[15] Maiga, Y., Moyenga, D., Ushijima, K., Sou, M. and Maiga, A.H. (2014) Greywater Characteristics in Rural Areas of Sahelian Region for Reuse Purposes: The Case of Burkina Faso. Revue des sciences de l’eau/Journal of Water Science, 27, 39-54.
www.erudit.org/revue/rseau/2014/v27/n1/1021981ar.html?vue=resume&modes=restriction.
[16] Morel, A. and Diener, S. (2006) Greywater Management in Low and Middle-Income Countries, Review of Different Treatment Systems for Households and Neighborhood. Swiss Federal Institute of Aquatic Science and Technology (Eawag), SANDEC, Dübendorf.
[17] Aguirre, P., Alvarez, E., Ferrer, I. and Garcia, J. (2011) Treatment of Piggery Wastewater in Experimental High Rate Algal Ponds. Revista Latinoamericana de Biotecnologia Ambiental y Algal, 2, 57-66.
http://uniciencia.ambientalex.info/revistas/vol2n21.pdf
[18] Santiago, A.N., Calijuri, M.L., Assemany, P.P., Calijuri, M.C. and dos Reis, A.J.D. (2013) Algal Biomass Production and Wastewater Treatment in High Rate Algal Ponds Receiving Disinfected Effluent. Environmental Technology, 34, 1877-1885.
http://dx.doi.org/10.1080/09593330.2013.812670
[19] Picot, B., Moersidik, S., Casellas, C. and Bontoux, J. (1993) Using Diurnal Variations in a High Rate Algal Pond for Management Pattern. Water Science and Technology, 28, 169-175.
http://www.iwaponline.com/wst/02810/wst028100169.htm
[20] Chen, P., Zhou, Q., Paing, J., Le, H. and Picot, B. (2003) Nutrient Removal by the Integrated Use of High Rate Algal Ponds and Macrophyte Systems in China. Water Science and Technology, 48, 251-257.
http://www.ncbi.nlm.nih.gov/pubmed/14510218
[21] El Hamouri, B., Rami, A. and Vasel, J.L. (2003) The Reasons behind the Performance Superiority of a High Rate Algal Pond over Three Facultative Ponds in Series. Water Science and Technology, 48, 269-276.
http://www.ncbi.nlm.nih.gov/pubmed/14510220.
[22] Derabe, H.M., Onodera, M., Takahashi, M., Satoh, H. and Fukazawa, T. (2014) Control of Algal Production in a High Rate Algal Pond: Investigation through Batch and Continuous Experiments. Water Science and Technology, 69, 2519-2525.
http://www.ncbi.nlm.nih.gov/pubmed/24960016
http://dx.doi.org/10.2166/wst.2014.174
[23] García, J., Mujeriego, R. and Hernández-Mariné, M. (2000) High Rate Algal Ponds Operating Strategies for Urban Wastewater Nitrogen Removal. Journal of Applied Phycology, 12, 331-339.
http://link.springer.com/article/10.1023%2FA%3A1008146421368
http://dx.doi.org/10.1023/A:1008146421368
[24] Maiga, Y., Moyenga, D., Nikiema, B.C., Ushijima, K., Maiga, A.H. and Funamizu, N. (2014) Designing Slanted Soil System for Greywater Treatment for Irrigation Purposes in Rural Area of Arid Regions. Environmental Technology, 35, 3020-3027.
http://dx.doi.org/10.1080/09593330.2014.929180
http://dx.doi.org/10.1080/09593330.2014.929180
[25] Arana, I., Irizar, A., Seco, C., Muela, A., Fernández-Astorga, A. and Barcina, I. (2003) gfp-Tagged Cells as a Useful Tool to Study the Survival of Escherichia coli in the Presence of the River Microbial Community. Microbial Ecology, 45, 29-38.
http://www.ncbi.nlm.nih.gov/pubmed/12447583
http://dx.doi.org/10.1007/s00248-002-1029-9
[26] Benchokroun, S., Imziln, B. and Hassani, L. (2003) Solar Inactivation of Mesophilic Aeromonas by Exogenous Photooxidation in High-Rate Algal Pond Treating Wastewater. Journal of Applied Microbiology, 94, 531-538.
http://www.ncbi.nlm.nih.gov/pubmed/12588563
http://dx.doi.org/10.1046/j.1365-2672.2003.01867.x
[27] Maiga, Y., Wethe, J., Denyigba, K. and Ouattara, A.S. (2009) The Impact of Pond Depth and Environmental Conditions on Sunlight Inactivation of E. coli and Enterococci in Wastewater in a Warm Climate. Canadian Journal of Microbiology, 55, 1364-1374.
http://www.ncbi.nlm.nih.gov/pubmed/20029528
http://dx.doi.org/10.1139/W09-104
[28] Muela, A., Garcia-Bringas, J.M., Seco, C., Arana, I. and Barcina, I. (2002) Participation of Oxygen and Role of Exogenous and Endogenous Sensitizers in the Photoinactivation of Escherichia coli by Photosynthetically Active Radiation, UV-A and UV-B. Microbial Ecology, 44, 354-364.
http://www.ncbi.nlm.nih.gov/pubmed/12375094
http://dx.doi.org/10.1007/s00248-002-1027-y
[29] Anderson, K.L., Whitlock, J.E. and Harwood, V.J. (2005) Persistence and Differential Survival of Fecal Bacteria in Subtropical Waters and Sediments. Applied and Environmental Microbiology, 71, 3041-3048.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1151827/pdf/1861-04.pdf
http://dx.doi.org/10.1128/AEM.71.6.3041-3048.2005
[30] Jori, G. and Brown, S.B. (2004) Photosensitized Inactivation of Microorganisms. Photochemical & Photobiological Sciences, 3, 403-405.
http://www.ncbi.nlm.nih.gov/pubmed/15122355
http://dx.doi.org/10.1039/b311904c
[31] Baya, D.G.S.T. (2012) Etude de l’autofloculation dans un chénal algal à haut rendement. Thèse de Doctorat, Université de Liège, Liège. (In French)
[32] WHO (2006) Guidelines for the Safe Use of Wastewater, Excreta and Greywater, Volume 4: Excreta and Greywater Use in Agriculture. WHO Press, Geneva.
[33] Mara, D. (2004) Domestic Wastewater Treatment in Developing Countries. Earthscan, London.
[34] Grattan, S.R. (2002) Irrigation Water Salinity and Crop Production. Publication 8066, University of California, Oakland.
http://vric.ucdavis.edu/pdf/Irrigation/IrrigationWaterSalinityandCropProduction.pdf
[35] Food and Agriculture Organization of the United Nations (1985) Water quality for agriculture. FAO, Rome.
http://www.fao.org/DOCReP/003/T0234e/T0234e00.htm