JMP  Vol.6 No.11 , September 2015
Fine Structure Calculations of Atomic Data for Ar XVI
Author(s) A. I. Refaie*
ABSTRACT
Fine structure energy levels, wavelengths, log gf and allowed transition probabilities (E1) have been calculated for Lithium-like Ar XVI. The optimized electrostatic parameters by a least square approach, have been used in the calculation to include the configuration interaction and relativistic effects. A total number of 69 Ar XVI levels having total angular momenta, 1/2 ≤ J ≤ 9/2 of even and odd parities, orbital angular momenta 2 ≤ l ≤ 4, with 546 E1 transitions for 6 ≤ n ≤ 10 are considered using the relativistic effect in the Breit-Pauli method, where n is the principal quantum number. A comparison is made with the available results in literature.

Cite this paper
Refaie, A. (2015) Fine Structure Calculations of Atomic Data for Ar XVI. Journal of Modern Physics, 6, 1609-1630. doi: 10.4236/jmp.2015.611163.
References
[1]   Schlesser, S., Boucard, S., Covita, D.S., dos Santos, J.M.F., Fuhrmann, H., Gotta, D., Gruber, A., Hennebach, M., Hirtl, A., Indelicato, P., Le Bigot, E.-O., Simons, L.M., Stingelin, L., Trassinelli, M., Veloso, J.F.C.A., Wasser, A. and Zmeskal, J. (2013) Physical Review A, 88, Article ID: 022503.
http://dx.doi.org/10.1103/PhysRevA.88.022503

[2]   Natarajan, L. (2013) Physical Review A, 88, Article ID: 052522.

[3]   Guerra, M., Amaro, P., Szabo, C.I., Gumberidze, A., Indelicato, P. and Santos, J.P. (2013) Journal of Physics B, 46, Article ID: 065701.

[4]   Saloman, E.B. (2010) Journal of Physical and Chemical Reference Data, 39, Article ID: 033101.
http://physics.nist.gov/cgi-bin/ASD/energy1.pl
http://dx.doi.org/10.1063/1.3337661


[5]   Lepson, J.K., Beiersdorfer, P., Behar, E. and Kahn, S.M. (2003) The Astrophysical Journal, 590, 604-617.
http://dx.doi.org/10.1086/374980

[6]   Aggarwal, K.M. and Keenan, F.P. (2013) Atomic Data and Nuclear Data Tables, 99, 156-248.
http://dx.doi.org/10.1016/j.adt.2012.03.001

[7]   Lowe, J.A., Chantler, C.T. and Grant, I.P. (2013) Radiation Physics and Chemistry, 85, 118-123.
http://dx.doi.org/10.1016/j.radphyschem.2013.01.004

[8]   Yerokhin, V.A. and Surzhykov, A. (2012) Physical Review A, 86, Article ID: 042507.

[9]   Liu, S.-Z., Xie, L.-Y., Ding, X.-B. and Dong, C.-Z. (2012) Acta Physica Sinica, 61, Article ID: 093106.

[10]   Natarajan, L., Natarajan, A. and Kadrekar, R. (2010) Physical Review A, 82, Article ID: 062514.
http://dx.doi.org/10.1103/PhysRevA.82.062514

[11]   Nahar, S.N. (2002) Astronomy & Astrophysics, 389, 716-728.
http://cds.u-strasbg.fr/cgi-bin/tipbase/tipbase
http://dx.doi.org/10.1051/0004-6361:20020675


[12]   Hu, M.-H. and Wang, Z.-W. (2009) Chinese Physics B, 18, 2244-2249.

[13]   Zhu, J.J., Gou, B.C. and Wang, Y.D. (2008) Journal of Physics B, 41, Article ID: 065702.

[14]   Liang, G.Y. and Badnell, N.R. (2011) Astronomy & Astrophysics, 528, A69.
http://dx.doi.org/10.1051/0004-6361/201016417

[15]   Sobel’man, I.I. (1979) Introduction to the Theory of Atomic Spectra. International Series of Monographs in National Philosophy, Pergamon Press, Oxford.

[16]   Fischer, C.F., Brage, T. and Jönsson, P. (2000) Computational Atomic Structure. Institute of Physics Publishing, Bristol and Philadelphia.

[17]   Cowan, R.D. (1981) The Theory of Atomic Structure and Spectra. University of California Press, Berkeley.
http://www.tcd.ie/Physics/People/Cormac.McGuinness/Cowan/

[18]   Sobel’man, I.I. (1979) Atomic Spectra and Radiative Transitions. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-662-05905-0

 
 
Top