Generalization of the Global Error Minimization for Constructing Analytical Solutions to Nonlinear Evolution Equations

Show more

References

[1] Griffiths, G.W. and Schiesser, W.E. (2012) Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple. Academic Press, New York.

[2] Li, Z.B. and He, J.H. (2010) Fractional Complex Transformation for Fractional Differential Equations. Computer and Mathematics with Applications, 15, 970-973.

[3] Wu, B.S. and Li, P.S. (2001) A Method for Obtaining Approximate Analytical Periods for a Class of Nonlinear Oscillators. Meccanica, 36, 167-176.

http://dx.doi.org/10.1023/A:1013067311749

[4] Wu, B.S. and Lim, C.W. (2004) Large Amplitude Non-Linear Oscillations of a General Conservative System. International Journal of Non-Linear Mechanics, 39, 859-870.

http://dx.doi.org/10.1016/S0020-7462(03)00071-4

[5] Wu, B.S., Sun, W.P. and Lim, C.W. (2006) An Analytical Technique for a Class of Strongly Non-Linear Oscillators. International Journal of Non-Linear Mechanics, 41, 766-774.

http://dx.doi.org/10.1016/j.ijnonlinmec.2006.01.006

[6] Yamgoué, S.B. and Kofané, T.C. (2008) Linearized Harmonic Balance Based Derivation of the Slow Flow for Some Class of Autonomous Single Degree of Freedom Oscillators. International Journal of Non-Linear Mechanics, 43, 993-999.

http://dx.doi.org/10.1016/j.ijnonlinmec.2008.05.001

[7] Yamgoué, S.B. (2012) On the Harmonic Balance with Linearization for Asymmetric Single Degree of Freedom Non-Linear Oscillators. Nonlinear Dynamics, 69, 1051-1062.

http://dx.doi.org/10.1007/s11071-012-0326-1

[8] Yamgoué, S.B., Nana, B. and Lekeufack, O.T. (2015) Improvement of Harmonic Balance Using Jacobian Elliptic Functions. Journal of Applied Mathematics and Physics, 3, 680-690.

http://dx.doi.org/10.4236/jamp.2015.36081

[9] Amore, P. and Aranda, A. (2003) Presenting a New Method for the Solution of Nonlinear Problems. Physics Letters A, 316, 218-225.

http://dx.doi.org/10.1016/j.physleta.2003.08.001

[10] Liao, S.J. (2003) Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton.

http://dx.doi.org/10.1201/9780203491164

[11] Yuste Bravo, S. (1991) Comments on the Method of Harmonic Balance in Which Jacobian Elliptic Functions Are Used. Journal of Sound Vibration, 145, 381-390.

http://dx.doi.org/10.1016/0022-460X(91)90109-W

[12] Yuste Bravo, S. (1992) “Cubication” of Non-Linear Oscillators Using the Principle of Harmonic Balance. International Journal of Non-Linear Mechanics, 27, 347-356.

http://dx.doi.org/10.1016/0020-7462(92)90004-Q

[13] Beléndez, A., Méndez, D.I., Fernandez, E., Marini, S. and Pascual, I. (2009) An Approximate Solution to the Duffing-Harmonic Oscillator by a Cubication Method. Physics Letters A, 373, 2805-2809.

http://dx.doi.org/10.1016/j.physleta.2009.05.074

[14] Yamgoué, S.B., Bogning, J.R., Kenfack Jiotsa, A. and Kofané, T.C. (2010) Rational Harmonic Balance-Based Approximate Solutions to Nonlinear Single-Degree-of-Freedom Oscillator Equations. Physica Scripta, 81, Article ID: 035003.

http://dx.doi.org/10.1088/0031-8949/81/03/035003

[15] Farzaneh, Y. and Tootoonchi, A.A. (2010) Global Error Minimization Method for Solving Strongly Nonlinear Oscillator Differential Equations. Computers and Mathematics with Applications, 59, 2887-2895.

http://dx.doi.org/10.1016/j.camwa.2010.02.006

[16] Elias-Zuniga, A. (2014) “Quintication” Method to Obtain Approximate Analytical Solutions of Non-Linear Oscillators. Applied Mathematics and Computations, 243, 849-855.

http://dx.doi.org/10.1016/j.amc.2014.05.085

[17] He, J.H. (2002) Preliminary Report on the Energy Balance for Nonlinear Oscillators. Mechanics Research Communications, 29, 107-111.

http://dx.doi.org/10.1016/S0093-6413(02)00237-9

[18] He, J.H. (2010) Hamiltonian Approach to Nonlinear Oscillators. Physics Letters A, 374, 2312-2314.

http://dx.doi.org/10.1016/j.physleta.2010.03.064

[19] Mickens, R.E. (2002) Fourier Representations for Periodic Solutions of Odd-Parity Systems. Journal of Sound and Vibration, 258, 398-401.

http://dx.doi.org/10.1006/jsvi.2002.5200

[20] Baldwin, D., Göktas, ü., Hereman, W., Hong, L. Martino, R.S. and Miller, J.C. (2004) Symbolic Computation of Exact Solutions Expressible in Hyperbolic and Elliptic Functions for Nonlinear PDEs. Journal of Symbolic Computations, 37, 669-705.

http://dx.doi.org/10.1016/j.jsc.2003.09.004