JQIS  Vol.5 No.3 , September 2015
Work Done on a Coherently Driven Quantum System
Abstract: We calculate the work done by a Landau-Zener-like dynamical field on two- and three-level quantum system by constructing a quantum power operator. We elaborate a general theory applicable to a wide range of closed-quantum system. We consider the dynamics of the system in the time domain ]-tLZ,tLZ[ (where is the LZ transition time in the sudden limit) where the external pulse changes its sign and its action becomes relevant. The statistical work is evaluated in a period [0,T] where T ≤tLZ. Our results are observed to be in good qualitative agreement with known results.
Cite this paper: Nsangou, I. and Fai, L. (2015) Work Done on a Coherently Driven Quantum System. Journal of Quantum Information Science, 5, 89-102. doi: 10.4236/jqis.2015.53011.

[1]   Jarzynski, C. (1997) Nonequilibrium Equality for Free Energy Differences. Physical Review Letter, 78, Article ID: 2690.

[2]   Sagawa, T. and Ueda, M. (2008) Second Law of Thermodynamics with Discrete Quantum Feedback Control. Physical Review Letter, 100, Article ID: 080403.

[3]   Morikuni, Y. and Tasaki, H. (2011) Quantum Jarzynski-Sagawa-Ueda Relations. Journal of Statistical Physical, 143, 1-10.

[4]   Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E. and Sano, M. (2010) Experimental Demonstration of Information-to-Energy Conversion and Validation of the Generalized Jarzynski Equality. Nature Physics, 6, 988-992.

[5]   Averin, D.V. and Pekola, J.P. (2011) Statistics of the Dissipated Energy in Driven Single-Electron Transitions. Euro Physics Letter, 96, Article ID: 67004.

[6]   Küng, B., Rössler, C., Beck, M., Marthaler, M., Golubev, D.S., Utsumi, Y., Ihn, T. and Ensslin, K. (2012) Irreversibility on the Level of Single-Electron Tunneling. Physical Review X, 2, Article ID: 011001.

[7]   Saira, O.-P., Yoon, Y., Tanttu, T., Möttönen, M., Averin, D.V. and Pekola, J.P. (2012) Test of the Jarzynski and Crooks Fluctuation Relations in an Electronic System. Physical Review Letter, 109, Article ID: 180601.

[8]   Alemany, A., Ribezzi, M. and Ritort, F. (2011) Recent Progress in Fluctuation Theorems and Free Energy Recovery. AIP Conference Proceedings, 1332, 96.

[9]   Hopkins, A., Jacobs, K., Habib, S. and Schwab, K. (2003) Feedback Cooling of a Nano-Mechanical Resonator. Physical Review B, 68, Article ID: 235328.

[10]   Steck, D., Jacobs, K., Mabuchi, H., Bhattacharya, T. and Habib, S. (2004) Quantum Feedback Control of Atomic Motion in an Optical Cavity. Physical Review Letter, 92, Article ID: 223004.

[11]   Crooks, G.E. (1998) Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems. Journal of Statistical Physics, 90, 1481-1487.

[12]   Crooks, G.E. (1999) Excursions in Statistical Dynamics. PhD Thesis, University of California, Berkeley.

[13]   Campisi, M., Talkner, P. and Hänggi, P. (2010) Fluctuation Theorems for Continuously Monitored Quantum Fluxes. Physical Review Letters, 105, Article ID: 140601.

[14]   Campisi, M., Hänggi, P. and Talkner, P. (2011) Colloquium. Quantum Fluctuation Relations: Foundations and Applications. Review Modern Physics, 83, 771-791.

[15]   Campisi, M., Talkner, P. and Hänggi, P. (2011) Influence of Measurements on the Statistics of Work Performed on a Quantum System. Physical Review E, 83, Article ID: 041114.

[16]   Pekola, J.P., Solinas, P., Shnirman, A. and Averin, D.V. (2013) Calorimetric Measurement of Work in a Quantum System. New Journal of Physics, 15, Article ID: 115006.

[17]   Chernyak, V. and Mukamel, S. (2004) Effect of Quantum Collapse on the Distribution of Work in Driven Single Molecules. Physical Review Letters, 93, Article ID: 048302.

[18]   Allahverdyan, A.E. and Nieuwenhuizen, T.M. (2005) Fluctuations of Work from Quantum Subensembles: The Case against Quantum Work-Fluctuation Theorem. Physical Review E, 71, Article ID: 066102.

[19]   Solinas, P., Averin, D.V. and Pekola, J.P. (2013) Work and Its Fluctuations in a Driven Quantum System. Physical Review B, 87, Article ID: 060508(R).

[20]   Engel, A. and Nolte, R. (2007) Jarzynski Equation for a Simple Quantum System: Comparing Two Definitions of Work. Europhysics Letters, 79, Article ID: 10003.

[21]   Talkner, P., Lutz, E. and Hänggi, P. (2007) Fluctuation Theorems: Work Is Not an Observable. Physical Review E, 75, Article ID: 050102.

[22]   Esposito, M., Harbola, U. and Mukamel, S. (2009) Nonequilibrium Fluctuations, Fluctuation Theorems, and Counting Statistics in Quantum Systems. Review Modern Physics, 81, 1665-1702.

[23]   Landau, L.D. (1932) On the Theory of Transfer of Energy at Collisions II. Physikalische Zeitschrift der Sowjetunion, 2, 46-51.

[24]   Zener, C. (1932) Non-Adiabatic Crossing of Energy Levels. Proceedings of the Royal Society of London, Series A, 137, 696-702.

[25]   Stückelberg, E.C.G. (1932) Theory of Inelastic Collisions between Atoms. Helvetica Physica Acta, 5, 369-423.

[26]   Majorana, E. (1932) Atoms Oriented in a Variable Magnetic Field. Nuovo Cimento, 9, 43-50.

[27]   Pokrovsky, V.L. and Sinitsyn, N.A. (2004) Spin Transitions in Time-Dependent Regular and Random Magnetic Fields. Physical Review B, 69, Article ID: 104414.

[28]   Lifshitz, E.M. and Landau, L.D. (1981) Quantum Mechanics: Non-Relativistic Theory. Butterworth-Heinemann, Oxford.

[29]   Vilenkin, N. and Klimyk, A. (1991) Representation of Lie Group and Special Functions. Kluwer, Dordrecht.

[30]   Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G. (1953) Higher Transcendental Functions. McGraw-Hill, New York.

[31]   Kenmoe, M.B., Phien, H.N., Kiselev, M.N. and Fai, L.C. (2013) Effects of Colored Noise on Landau-Zener Transitions. Physical Review B, 87, Article ID: 224301.

[32]   Carroll, C.E. and Hioe, F.T. (1986) Generalisation of the Landau-Zener Calculation to Three Levels. Journal of Physics A: Mathematical and General, 19, 1151-1161.