APM  Vol.5 No.11 , September 2015
Mean-Value Theorems for Harmonic Functions on the Cube in Rn
Author(s) Petar Petrov*
ABSTRACT
Let be a hypercube in Rn. We prove theorems concerning mean-values of harmonic and polyharmonic functions on In(r), which can be considered as natural analogues of the famous Gauss surface and volume mean-value formulas for harmonic functions on the ball in and their extensions for polyharmonic functions. We also discuss an application of these formulas—the problem of best canonical one-sided L1-approximation by harmonic functions on In(r).

Cite this paper
Petrov, P. (2015) Mean-Value Theorems for Harmonic Functions on the Cube in Rn. Advances in Pure Mathematics, 5, 683-688. doi: 10.4236/apm.2015.511062.
References
[1]   Helms, L.-L. (2009) Potential Theory. Springer-Verlag, London.
http://dx.doi.org/10.1007/978-1-84882-319-8

[2]   Pizzetti, P. (1909) Sulla media dei valori che una funzione dei punti dello spazio assume sulla superficie della sfera. Rendiconti Linzei—Matematica e Applicazioni, 18, 182-185.

[3]   Courant, R. and Hilbert, D. (1989) Methods of Mathematical Physics Vol. II. Partial Differential Equations Reprint of the 1962 Original. John Wiley & Sons Inc., New York.

[4]   Goldstein, M., Haussmann, W. and Rogge, L. (1988) On the Mean Value Property of Harmonic Functions and Best Harmonic L1-Approximation. Transactions of the American Mathematical Society, 305, 505-515.

[5]   Sakai, M. (1982) Quadrature Domains. Lecture Notes in Mathematics, Springer, Berlin.

[6]   Gustafsson, B., Sakai, M. and Shapiro, H.S. (1977) On Domains in Which Harmonic Functions Satisfy Generalized Mean Value Properties. Potential Analysis, 71, 467-484.

[7]   Gustafsson, B. (1998) On Mother Bodies of Convex Polyhedra. SIAM Journal on Mathematical Analysis, 29, 1106-1117.
http://dx.doi.org/10.1137/S0036141097317918

[8]   Bojanov, B. (2001) An Extension of the Pizzetti Formula for Polyharmonic Functions. Acta Mathematica Hungarica, 91, 99-113.
http://dx.doi.org/10.1023/A:1010687011674

[9]   Armitage, D.H. and Gardiner, S.J. (1999) Best One-Sided L1-Approximation by Harmonic and Subharmonic Functions. In: Haußmann, W., Jetter, K. and Reimer, M., Eds., Advances in Multivariate Approximation, Mathematical Research (Volume 107), Wiley-VCH, Berlin, 43-56.

[10]   Dryanov, D. and Petrov, P. (2002) Best One-Sided L1-Approximation by Blending Functions of Order (2,2). Journal of Approximation Theory, 115, 72-99.
http://dx.doi.org/10.1006/jath.2001.3652

 
 
Top