Back
 IJMNTA  Vol.4 No.3 , September 2015
Asymptotic Behavior of Stochastic Strongly Damped Wave Equation with Multiplicative Noise
Abstract: In this paper we study the asymptotic dynamics of the stochastic strongly damped wave equation with multiplicative noise under homogeneous Dirichlet boundary condition. We investigate the existence of a compact random attractor for the random dynamical system associated with the equation.
Cite this paper: Wang, Z. and Zhou, S. (2015) Asymptotic Behavior of Stochastic Strongly Damped Wave Equation with Multiplicative Noise. International Journal of Modern Nonlinear Theory and Application, 4, 204-214. doi: 10.4236/ijmnta.2015.43015.
References

[1]   Lomdahl, P.S., Soerensen, O.H. and Christiansen, P. L. (1982) Soliton Excitations in Josephson Tunnel Junctions. Physical Review B, 25, 5337-5348.

[2]   Shen, Z.W., Zhou, S.F. and Shen, W.X. (2010) One-Dimensional Random Attractor and Rotation Number of the Stochastic Damped Sine-Gordon Equation. Journal of Differential Equations, 248, 1432-1457.
http://dx.doi.org/10.1016/j.jde.2009.10.007

[3]   Chen, F.X., Guo, B.L. and Wang, P. (1998) Long Time Behavior of Strongly Damped Nonlinear Wave Equations. Journal of Differential Equations, 147, 231-241.
http://dx.doi.org/10.1006/jdeq.1998.3447

[4]   Chow, P.-L. (2002) Stochastic Wave Equation with Polynomial Nonlinearity. The Annals of Applied Probability, 12, 361-381.
http://dx.doi.org/10.1214/aoap/1015961168

[5]   Ghidaglia, J.M. and Marzocchi, A. (1991) Longtime Behavior of Strongly Damped Nonlinear Wave Equations, Global Attractors and Their Dimension. SIAM Journal on Mathematical Analysis, 22, 879-895.
http://dx.doi.org/10.1137/0522057

[6]   Kalantarov, V. and Zelik, S. (2009) Finite-Dimensional Attractors for the Quasi-Linear Strongly-Damped Wave Equation. Journal of Differential Equations, 247, 1120-1155.
http://dx.doi.org/10.1016/j.jde.2009.04.010

[7]   Fan, X.M. (2006) Attractors for a Damped Stochastic Wave Equation of Sine-Gordon Type with Sublinear Multiplicative Noise. Stochastic Analysis and Applications, 24, 767-793.
http://dx.doi.org/10.1080/07362990600751860

[8]   Fan, X.M. (2004) Random Attractor for a Damped Sine-Gordon Equation with White Noise. Pacific Journal of Mathematics, 216, 63-76.
http://dx.doi.org/10.2140/pjm.2004.216.63

[9]   Fan, X.M. and Wang, Y. (2007) Fractal Dimensional of Attractors for a Stochastic Wave Equation with Nonlinear Damping and White Noise. Stochastic Analysis and Applications, 25, 381-396.
http://dx.doi.org/10.1080/07362990601139602

[10]   Fan, X.M. (2008) Random Attractors for Damped Stochastic Wave Equations with Multiplicative Noise. International Journal of Mathematics, 19, 421-437.
http://dx.doi.org/10.1142/S0129167X08004741

[11]   Li, H.Y. and Zhou, S.F. (2007) One-Dimensional Global Attractor for Strongly Damped Wave Equations. Communications in Nonlinear Science and Numerical Simulation, 12, 784-793.
http://dx.doi.org/10.1016/j.cnsns.2005.06.007

[12]   Li, H.Y. and Zhou, S.F. (2008) On Non-Autonomous Strongly Damped Wave Equations with a Uniform Attractor and Some Averaging. Journal of Mathematical Analysis and Applications, 341, 791-802.
http://dx.doi.org/10.1016/j.jmaa.2007.10.051

[13]   Lu, K.N. and Schmalfuß, B. (2007) Invariant Manifolds for Stochastic Wave Equations. Journal of Differential Equations, 236, 460-492.
http://dx.doi.org/10.1016/j.jde.2006.09.024

[14]   Lv, Y. and Wang, W. (2008) Limiting Dynamics for Stochastic Wave Equations. Journal of Differential Equations, 244, 1-23.
http://dx.doi.org/10.1016/j.jde.2007.10.009

[15]   Massatt, P. (1983) Limiting Behavior for Strongly Damped Nonlinear Wave Equations. Journal of Differential Equations, 48, 334-349.
http://dx.doi.org/10.1016/0022-0396(83)90098-0

[16]   Pata, V. and Zelik, S. (2006) Smooth Attractors for Strongly Damped Wave Equations. Nonlinearity, 19, 1495-1506.
http://dx.doi.org/10.1088/0951-7715/19/7/001

[17]   Temam, R. (1988) Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, Berlin.
http://dx.doi.org/10.1007/978-1-4684-0313-8

[18]   Wang, B.X. and Gao, X.L. (2009) Random Attractors for Wave Equations on Unbounded Domains. Discrete and Continuous Dynamical Systems, Special, 800-809.

[19]   Yang, M.H. and Sun, C.Y. (2009) Attractors for Strongly Damped Wave Equations. Nonlinear Analysis: Real World Applications, 10, 1097-1100.
http://dx.doi.org/10.1016/j.nonrwa.2007.12.001

[20]   Yang, M.H. and Sun, C.Y. (2010) Exponential Attractors for the Strongly Damped Wave Equations. Nonlinear Analysis: Real World Applications, 11, 913-919.
http://dx.doi.org/10.1016/j.nonrwa.2009.01.022

[21]   Yang, M.H. and Sun, C.Y. (2009) Dynamics of Strongly Damped Wave Equations in Locally Uniform Spaces: Attractors and Asymptotic Regularity. Transactions of the American Mathematical Society, 361, 1069-1101.
http://dx.doi.org/10.1090/S0002-9947-08-04680-1

[22]   Yang, M.H., Duan, J.Q. and Kloeden, P. (2011) Asymptotic Behavior of Solutions for Random Wave Equations with Nonlinear Damping and White Noise. Nonlinear Analysis: Real World Applications, 12, 464-478.
http://dx.doi.org/10.1016/j.nonrwa.2010.06.032

[23]   Zhou, S.F. (1999) Dimension of the Global Attractor for Strongly Damped Nonlinear Wave Equation. Journal of Mathematical Analysis and Applications, 233, 102-115.
http://dx.doi.org/10.1006/jmaa.1999.6269

[24]   Zhou, S.F. (1999) Global Attractor for Strongly Damped Nonlinear Wave Equation. Functional Differential Equations, 6, 451-470.

[25]   Zhou, S.F. and Fan, X.M. (2002) Kernel Sections for Non-Autonomous Strongly Damped Wave Equations. Journal of Mathematical Analysis and Applications, 275, 850-869.
http://dx.doi.org/10.1016/S0022-247X(02)00437-7

[26]   Zhou, S.F. (2003) Attractors for Strongly Damped Wave Equations with Critical Exponent. Applied Mathematics Letters, 16, 1307-1314.
http://dx.doi.org/10.1016/S0893-9659(03)90134-0

[27]   Zhou, S.F., Yin, F.Q. and Ouyang, Z.G. (2005) Random Attractor for Damped Nonlinear Wave Equations with White Noise. SIAM Journal on Applied Dynamical Systems, 4, 883-903.
http://dx.doi.org/10.1137/050623097

[28]   Arnold, L. (1998) Random Dynamical Systems. Springer-Verlag, New York and Berlin.
http://dx.doi.org/10.1007/978-3-662-12878-7

[29]   Chueshov, I. (2002) Monotone Random Systems Theory and Applications. Springer-Verlag, New York.
http://dx.doi.org/10.1007/b83277

[30]   Bates, P.W., Lu, K.N. and Wang, B.X. (2009) Random Attractors for Stochastic Reaction-Diffusion Equations on Unbounded Domains. Journal of Differential Equations, 246, 845-869.
http://dx.doi.org/10.1016/j.jde.2008.05.017

[31]   Duan, J.Q., Lu, K.N. and Schmalfuss, B. (2003) Invariant Manifolds for Stochastic Partial Differential Equations. The Annals of Probability, 31, 2109-2135.
http://dx.doi.org/10.1214/aop/1068646380

[32]   Pazy, A. (1983) Semigroup of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4612-5561-1

 
 
Top