[1] James, C. (2014) Global Status of Commercialized Biotech/GM Crops. ISAAA, Ithaca. (ISAAA Brief, n. 49).
[2] Twyman, R.M., Christou, P. and Stöger, E. (2002) Genetic Transformation of Plants and Their Cells. In: Oksman-Caldentey, K.M. and Barz, W.H., Eds., Plant Biotechnology and Transgenic Plants, M. Dekker, New York, 111-141.
http://dx.doi.org/10.1201/9780203910849.ch6
[3] Visarada, K.B.R.S., Meena, K., Aruna, C., Srujana, S., Saikishore, N. and Seetharama, N. (2009) Transgenic Breeding: Perspectives and Prospects. Crop Science, 49, 1555-1563.
http://dx.doi.org/10.2135/cropsci2008.10.0581
[4] Scott, M.P. and Pollak, L.M. (2005) Transgenic Maize. Starch, 57, 187-195.
http://dx.doi.org/10.1002/star.200400396
[5] Wang, F., Peng, S., Cui, K., Nie, L. and Huang, J. (2014) Field Performance of Bt Transgenic Crops: A Review. Australian Journal of Crop Science, 8, 18-26.
[6] Lynch, P.T., Jones, J., Blackhall, N.W., Davey, M.R., Power, J.B., Cocking, E.C., Nelson, M.R., Bigelow, D.M., Orum, T.V., Orth, C.E. and Schuh, W. (1995) The Phenotypic Characterization of R2 Generation Transgenic Rice Plants under Field and Glasshouse Conditions. Euphytica, 85, 395-401.
http://dx.doi.org/10.1007/BF00023972
[7] Liu, W., Torisky, R.S., Mallister, K.P., Avdiushko, S., Hildebrand, D. and Collins, G.B. (1996) Somatic Embryo Cycling: Evaluation of a Novel Transformation and Assay System for Seed-Specific Gene Expression in Soybean. Plant Cell Tissue Organ Culture, 47, 33-42.
http://dx.doi.org/10.1007/bf02318963
[8] Blanche, S.B., Myers, G.O., Zumba, J.Z., Caldwell, D. and Hayes, J. (2006) Stability Comparisons between Conventional and Near-Isogenic Transgenic Cotton Cultivars. Journal of Cotton Science, 10, 17-28.
http://journal.cotton.org
[9] Magg, T., Melchinger, A.E., Klein, D. and Bohn, M. (2001) Comparison of Bt Maize Hybrids with Their Non-Transgenic Counterparts and Commercial Varieties for Resistance to Europea Corn Borer and for Agronomic Traits. Plant Breeding, 120, 397-403.
http://dx.doi.org/10.1046/j.1439-0523.2001.00621.x
[10] Ramalho, M.A.P., Santos, J.B., Pinto, C.A.B.P., Souza, E.A., Gonçalves, F.M.A. and Souza, J.C. (2012) Genética na agropecuária. 5 Edition, UFLA, Lavras.
[11] Kang, M.S. (1998) Using Genotype by Environment Interaction for Crop Cultivar Blending Ability in AOT. Crop Science, 41, 199-252.
[12] Bernardo, R. (2010) Breeding for Quantitative Traits in Plants. 2nd Edition, Stemma Press, Woodbury.
[13] Kang, M.S. (2002) Genotype-Environment Interaction: Progress and Prospects. Quantitative Genetics, Genomics and Plant Breeding. CAB International.
[14] Ramalho, M.A.P., Ferreira, D.F. and Oliveira, A.C. (2012) Experimentação em genética e melhoramento de plantas. 3rd Edition, UFLA, Lavras.
[15] Pimentel-Gomes, F. (2009) Curso de estatística experimental. 15th Edition, FEALQ, Piracicaba.
[16] Statistical Analysis Software Institute (2000) SAS/STAT Software. Version 8.0. Cary.
[17] Cruz, C.D. (2013) Programa GENES: Estatística experimental e matrizes. UFV, Viçosa.
[18] Anicchiarico, P. (1992) Cultivar Adaptation and Recommendation from Alfafa Trials in Northern Italy. Journal Genetics and Breeding, 46, 269-278.
[19] Wricke, G. (1965). Zur berechning der okovalenz bei sommerweizen und hafer. Zeitschrift fur Pflanzenzuchtung, 52, 127-138.
[20] Gauch, H.G. and Zobel, R.W. (1996) AMMI Analysis of Yield Trials. In: Kang, M.S. and Gauch, H.G., Eds., Genotype by Environment Interaction, CRC Press, Boca Raton, 85-122.
http://dx.doi.org/10.1201/9781420049374.ch4
[21] Duarte, J.B. and Vencovsky, R. (1999) Interação genótipos x ambientes: Uma introdução à análise “AMMI”. Sociedade Brasileira de Genética, Ribeirão Preto.
[22] Resende, M.D.V. (2002) Genética biométrica e estatística no melhoramento de plantas perenes. Embrapa Informação Tecnológica, Brasília.
[23] Ferreira, F.S., Nozawa, S.R. and Souza, J.C. (2015) Consequences of Gene Stacking by Hybridization in Transgenic Plants. Euphytica (Online), 10.
http://dx.doi.org/10.1007/s10681-015-1464-6
[24] Gianessi, L.P. and Carpenter, J.E. (1999) Agricultural Biotechnology: Inset Control Benefits. National Center for Food and Agricultural Policy, Washington DC.
[25] Graeber, J.V., Nafzinger, E.D. and Mies, D.W. (1999) Evaluation of Transgenic Bt-containing Corn Hybrids. Journal Production Agricultural, 12, 659-663.
http://dx.doi.org/10.2134/jpa1999.0659
[26] Ma, B.L. and Subedi, K.D. (2005) Development, Yield, Grain Moisture and Nitrogen Uptake of Bt Corn Hybrids and Their Conventional Near-Isolines. Fields Crops Research, 93, 199-211.
http://dx.doi.org/10.1016/j.fcr.2004.09.021
[27] Laserna, M.P., Maddonni, G.A. and López, C.G. (2012) Phenotypic Variations between Non-Transgenic and Transgenic Maize Hybrids. Field Crops Research, 134, 175-184.
http://dx.doi.org/10.1016/j.fcr.2012.06.005
[28] Mungai, N.W., Motavalli, P.P., Nelson, K.A. and Kremer, R.J. (2005) Differences in Yields, Residue Composition and N Mineralization Dynamics of Bt and Non-Bt Maize. Nutrient Cycling in Agroecosystems, 73, 101-109.
http://dx.doi.org/10.1007/s10705-005-8850-8
[29] Kang, M.S. and Magari, R. (1996) New Developments in Selecting for Phenotypic Stability in Crop Breeding. In: Kang, M.S. and Gauch Junior, H.G., Eds., Genotype by Environment Interaction, Elsevier, New York, 11-14.