JMP  Vol.6 No.11 , September 2015
Scalable Cavity Quantum Electrodynamics System for Quantum Computing
We introduce a new scalable cavity quantum electrodynamics platform which can be used for quantum computing. This system is composed of coupled photonic crystal (PC) cavities which their modes lie on a Dirac cone in the whole super crystal band structure. Quantum information is stored in quantum dots that are positioned inside the cavities. We show if there is just one quantum dot in the system, energy as photon is exchanged between the quantum dot and the Dirac modes sinusoidally. Meanwhile the quantum dot becomes entangled with Dirac modes. If we insert more quantum dots into the system, they also become entangled with each other.

Cite this paper
Aram, M. and Khorasani, S. (2015) Scalable Cavity Quantum Electrodynamics System for Quantum Computing. Journal of Modern Physics, 6, 1467-1477. doi: 10.4236/jmp.2015.611151.
[1]   Purcell, E.M., Torrey, H.C. and Pound, R.V. (1946) Physical Review, 69, 681.

[2]   Walther, H., Varcoe, B.T.H., Englert, B. and Becker, T. (2006) Reports on Progress in Physics, 69, 1325-1382.

[3]   Mabuchi, H. and Doherty, A.C. (2002) Science, 298, 1372-1377.

[4]   Raizen, M.G., Thompson, R.J., Brecha, R.J., Kimble, H.J. and Carmichael, H.J. (1989) Physical Review Letters, 63, 240.

[5]   Ohta, R., Ota, Y., Nomura, M., Kumagai, N., Ishida, S., Iwamoto, S. and Arakawa, Y. (2011) Applied Physics Letters, 98, Article ID: 173104.

[6]   Thon, S.M., Rakher, M.T., Kim, H., Gudat, J., Irvine, W.T.M., Petroff, P.M. and Bouwmeester, D. (2009) Applied Physics Letters, 94, Article ID: 111115.

[7]   Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L. and Forchel, A. (2004) Nature, 432, 197-200.

[8]   Lev, B., Srinivasan, K., Barclay, P., Painter, O. and Mabuchi, H. (2004) Nanotechnology, 15, S556.

[9]   Buck, J.R. and Kimble, H.J. (2003) Physical Review A, 67, Article ID: 033806.

[10]   Aoki, T., Dayan, B., Wilcut, E., Bowen, W.P., Parkins, A.S., Kippenberg, T.J., Vahala, K.J. and Kimble, H.J. (2006) Nature, 443, 671-674.

[11]   Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atature, M., Gulde, S., Falt, S., Hu, E.L. and Imamoglu, A. (2007) Nature, 445, 896-899.

[12]   Casanova, J., Romero, G., Lizuain, I., García-Ripoll, J.J. and Solano, E. (2010) Physical Review Letters, 105, Article ID: 263603.

[13]   Liberato, S.D. (2014) Physical Review Letters, 112, Article ID: 016401.

[14]   Günter, G., Anappara, A.A., Hees, J., Sell, A., Biasiol, G., Sorba, L., Liberato, S.D., Ciuti, C., Tredicucci, A., Leitenstorfer, A. and Huber, R. (2009) Nature, 458, 178-181.

[15]   Shahraki, M.A., Khorasani, S. and Aram, M.H. (2014) Applied Physics A, 115, 595-603.

[16]   Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C. and O’Brien, J.L. (2010) Nature, 464, 45-53.

[17]   Vandersypen, L.M.K., Steffen, M., Sherwood, M.H., Yannoni, C.S., Breyta, G. and Chuang, I.L. (2000) Applied Physics Letters, 76, 646-648.

[18]   Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H. and Chuang, I.L. (2001) Nature, 414, 883-887.

[19]   Schoelkopf, R.J. and Girvin, S.M. (2008) Nature, 451, 664-669.

[20]   Houck, A.A., Türeci, H.E. and Koch, J. (2012) Nature Physics, 8, 292-299.

[21]   DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M. and Schoelkopf, R.J. (2009) Nature, 460, 240-244.

[22]   Aram, M.H., Mohajeri, R. and Khorasani, S. (2013) Applied Physics A, 115, 581-587.

[23]   Schleich, W.P. (2001) Quantum Optics in Phase Space. Wiley-VCH, Berlin.

[24]   Andreani, L.C., Panzarini, G. and Gérard, J.-M. (1999) Physical Review B, 60, Article ID: 13276.

[25]   Nielsen, M.A. and Chuang, I.L. (2010) Quantum Computation and Quantum Information. Cambridge University Press, New York.