[1] Sciama, D.W. (1953) On the Origin of Inertia. Monthly Notices of the Royal Astronomical Society, 113, 34-42.
http://dx.doi.org/10.1093/mnras/113.1.34
[2] Hoyle, F. and Narlikar, J.V. (1995) Cosmology and Action-at-a-Distance Electrodynamics. Reviews of Modern Physics, 67, 113-155.
http://dx.doi.org/10.1103/RevModPhys.67.113
[3] Phipps, T.E. (1999) Meditations on Action-at-a-Distance. In: Chubykalo, A.E., Pope, V. and Smirnov-Rueda, R., Eds., Instantaneous Action-at-a-Distance in Modern Physics: Pro and Contra, Nova Science, Commack, 137-156.
[4] Narlikar, J.V. (1999) Actions at a Distance in Electrodynamics and Inertia. In: Chubykalo, A.E., Pope, V. and Smirnov-Rueda, R., Eds., Instantaneous Action-at-a-Distance in Modern Physics: Pro and Contra, Nova Science, Commack, 19-34.
[5] Bell, M.B. (2013) Interesting Evidence for a Low-Level Oscillation Superimposed on the Local Hubble Flow. Astrophysics and Space Science, 344, 471-477.
http://dx.doi.org/10.1007/s10509-012-1344-7
[6] Freedman, W.L., Madore, B.F., Gibson, B.K., Ferrarese, L., Kelson, D.D., Sakai, S., Mould, J.R., Kennicutt, R.C., Ford, H.C., Graham, J.A., Huchra, J.P., Hughes, S.M.G., Illingworth, J.D., Macri, L.M. and Stetson, P.B. (2001) Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. Astrophysical Journal, 553, 47-72.
http://dx.doi.org/10.1086/320638
[7] Bell, M.B. (2002) Evidence for Large Intrinsic Redshifts. Astrophysical Journal, 566, 705-711.
http://dx.doi.org/10.1086/338272
[8] Bell, M.B. (2002) Quasar Distances and Lifetimes in a Local Model. Astrophysical Journal, 567, 801-810.
http://dx.doi.org/10.1086/338754
[9] Bell, M.B. (2002) Evidence that an Intrinsic Component that is a Harmonic of z = 0.062 May be Present in Every Quasar Redshift. arXiv:0208320.
[10] Bell, M.B. (2002) Discrete Intrinsic Redshifts from Quasars to Normal Galaxies. arXiv:0211091.
[11] Bell, M.B. and Comeau, S.P. (2003) Intrinsic Redshifts and the Hubble Constant.
http://arxiv.org/abs/astro-ph/0305060
[12] Bell, M.B., Comeau, S.P. and Russell, D.G. (2004) Discrete Components in the Radial Velocities of ScI Galaxies.
http://arxiv.org/abs/astro-ph/0407591
[13] Bell, M.B. (2007) Further Evidence That the Redshifts of AGN Galaxies May Contain Intrinsic Components. Astrophysical Journal Letters, 667, L129-L132. http://dx.doi.org/10.1086/522337
[14] Tifft, W.G. (1996) Global Redshift Periodicities and Periodicity Structure. Astrophysical Journal, 468, 491-518.
http://dx.doi.org/10.1086/177710
[15] Tifft, W.G. (1997) Global Redshift Periodicities and Variability. Astrophysical Journal, 485, 465-483.
http://dx.doi.org/10.1086/304443
[16] Bell, M.B. and Comeau, S.P. (2014) More Evidence for an Oscillation Superimposed on the Hubble Flow. Astrophysics and Space Science, 349, 337-442.
http://dx.doi.org/10.1007/s10509-013-1601-4
[17] Rohde, R.A. and Muller, R.A. (2005) Cycles in Fossil Diversity. Nature, 434, 208-210.
[18] Melott, A.L. and Bambach, R.K. (2010) A Ubiquitous 62 Myr Periodic Fluctuation Superimposed on General Trends in Fossil Biodiversity: II, Evolutionary Dynamics Associated with Periodic Fluctuation in Marine Diversity.
http://arxiv.org/abs/1011.4496
[19] Melott, A.L. and Bambach, R.K. (2011) A Ubiquitous 62 Myr Periodic Fluctuation Superimposed on General Trends in Fossil Biodiversity: Documentation. Paleobiology, 37, 92-112.
http://dx.doi.org/10.1666/09054.1
[20] Melott, A.L. and Bambach, R.K. (2011) A Ubiquitous 62 Myr Periodic Fluctuation Superimposed on General Trends in Fossil Biodiversity: II, Evolutionary Dynamics Associated with Periodic Fluctuation in Marine Diversity. Paleobiology, 37, 383-408.
http://dx.doi.org/10.1666/09055.1
[21] Feng, F. and Bailer-Jones, C.A.L. (2013) Assessing the Influence of the Solar Orbit on Terrestrial Biodiversity. Astrophysical Journal, 768, 152-173.
http://dx.doi.org/10.1088/0004-637X/768/2/152
[22] Buniy, R.V. and Hsu, S.D.H. (2012) Everything Is Entangled. Physics Letters B, 718, 233-236.
http://dx.doi.org/10.1016/j.physletb.2012.09.047