JMP  Vol.6 No.11 , September 2015
On the Preponderance of Matter over Antimatter
ABSTRACT
Quantum electrodynamics (QED) is built on the original Dirac equation, an equation that exhibits perfect symmetry in that it is symmetric under charge conjugation (C), space (P) and time (T) reversal and any combination of these discrete symmetries. We demonstrate herein that while the proposed Lorentz invariant Curved Spacetime Dirac Equations (CSTD-equations) obey C, PT and CPT-symmetries, these equations readily violate P, T, CP and CT-symmetries. Realising this violation, namely the T and CT-violation, we take this opportunity to suggest that the Curved Spacetime Dirac Equations may help in solving the long standing riddle and mystery of the preponderance of matter over antimatter. We come to the tentative conclusion that if these CSTD-equations are to explain the preponderance of matter over antimatter; then, photons are to be thought of as described by the spherically curved version of this set of equations, while ordinary matter is to be explained by the parabolically and hyperbolically curved spacetime versions of this same set of equations.

Cite this paper
Nyambuya, G. (2015) On the Preponderance of Matter over Antimatter. Journal of Modern Physics, 6, 1441-1451. doi: 10.4236/jmp.2015.611148.
References
[1]   Dirac, P.A.M. (1928) Proceedings of the Royal Society (London), A117, 610-612.
http://dx.doi.org/10.1098/rspa.1928.0023

[2]   Dirac, P.A.M. (1928) Proceedings of the Royal Society (London), A118, 351-361.
http://dx.doi.org/10.1098/rspa.1928.0056

[3]   Nyambuya, G.G. (2008) Foundations of Physics, 37, 665-677.
http://dx.doi.org/10.1007/s10701-008-9226-0

[4]   Klein, O. (1926) Zeitschrift für Physik, 37, 895-906.
http://dx.doi.org/10.1007/BF01397481

[5]   Nyambuya, G.G. (2013) Journal of Modern Physics, 4, 1066-1074.
http://dx.doi.org/10.4236/jmp.2013.48143

[6]   Alhaidari, A.D. and Jellal, A. (2014) Dirac and Klein-Gordon Equations in Curved Space. 1-8. arXiv:1106.2236v3.

[7]   Arminjon, M. and Reifler, F. (2013) Brazilian Journal of Physics, 43, 64-77.
http://dx.doi.org/10.1007/s13538-012-0111-0

[8]   Arminjon, M. and Reifler, F. (2010) Brazilian Journal of Physics, 40, 242-255.
http://dx.doi.org/10.1590/S0103-97332010000200020

[9]   Pollock, M.D. (2010) Acta Physica Polonica B, 41, 1827-1846.

[10]   Arminjon, M. (2008) Foundations of Physics, 38, 1020-1045.
http://dx.doi.org/10.1007/s10701-008-9249-6

[11]   Weyl, H.K.H. (1927) Zeitschrift für Physik, 56, 330-352.
http://dx.doi.org/10.1007/BF01339504

[12]   Weyl, H.K.H. (1927) Proceedings of the National Academy of Sciences of the United States of America, 15, 323-334.
http://dx.doi.org/10.1073/pnas.15.4.323

[13]   Fock, V.A. (1929) Zeitschrift für Physik, 57, 261-277.
http://dx.doi.org/10.1007/BF01339714

[14]   Lawrie, D.I. (1990) A Grand Tour of Theoretical Physics. 1st Edition, Institute of Physics Publishing, Bristol, 147-153.

[15]   Nyambuya, G.G. (2014) Journal of Modern Physics, 5, 2111-2124.
http://dx.doi.org/10.4236/jmp.2014.518207

[16]   Nyambuya, G.G. (2014) Journal of Modern Physics, 5, 1902-1909.
http://dx.doi.org/10.4236/jmp.2014.517185

[17]   Nyambuya, G.G. (2014) Journal of Modern Physics, 5, 1733-1766.
http://dx.doi.org/10.4236/jmp.2014.516173

[18]   Nyambuya, G.G. (2009) Apeiron, 16, 516-531.

[19]   Nyambuya, G.G. (2013) Journal of Modern Physics, 4, 1050-1058.
http://dx.doi.org/10.4236/jmp.2013.48141

[20]   Sakhorov, A.D. (1967) Journal of Experimental and Theoretical Physics Letters, 5, 24-27.

[21]   Aaij, R., Abellan Beteta, C. and Adeva, B., LHCb-Collaboration (2013) Physical Review Letters, 110, Article ID: 221601.
http://dx.doi.org/10.1103/PhysRevLett.110.221601

[22]   Feynman, R.P. (1961) Quantum Electrodynamics: Lecture Notes. Revised Edition, W. A. Benjamin Inc., New York, 66-70.

 
 
Top