Graphene  Vol.4 No.4 , October 2015
Mono-Vacancy and B-Doped Defects in Carbon Heterojunction Nanodevices
ABSTRACT
We present a detailed theoretical study of the behavior of mono-vacancy and B-doped defects in carbon heterojunction nanodevices. We have introduced a complete set of formation energy and surface reactivity calculations, considering a range of different diameters and chiralities of combined carbon nanotubes. We have investigated three distinct combinations of carbon heterojunctions using density functional theory (DFT) and applying B3LYP/3-21g: armchair-armchair herteojunctions, zigzag-zigzag heterojunctions, and zigzag-armchair heterojunctions. We have shown for first time a detailed study of formation energy of mono-vacancy and B-doped defects of carbon heterojunction nanodevices. Our calculations show that the highest surface reactivity is found for the B-doped zigzag-armchair heterojunctions and it is easier to remove the carbon atom from the network of heterojunction armchair-armchair CNTs than the heterojunction zigzag-armchair and zigzag-zigzag CNTs.

Cite this paper
El-Barbary, A.A., Kamel, M.A., Eid, K.M., Taha, H.O. and Hassan, M.M. (2015) Mono-Vacancy and B-Doped Defects in Carbon Heterojunction Nanodevices. Graphene, 4, 84-90. doi: 10.4236/graphene.2015.44009.
References
[1]   Ruppalt, L.B. and Lyding, J.W. (2007) Metal-Induced Gap States at a Carbon-Nanotube Intramolecular Heterojunction Observed by Scanning Tunneling Microscopy. Small, 3, 280-284.
http://dx.doi.org/10.1002/smll.200600343

[2]   Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. and Iijima, S. (2004) Direct Evidence for Atomic Defects in Graphene Layers. Nature, 430, 870-873. http://dx.doi.org/10.1038/nature02817

[3]   Lu, J.Q., Wu, J., Duan, W. and Gu, B.L. (2004) Effects of Finite Deformed Length in Carbon Nanotubes. Applied Physics Letters, 84, 4203. http://dx.doi.org/10.1063/1.1751608

[4]   Triozon, F., Lambin, P. and Roche, S. (2005) Electronic Transport Properties of Carbon Nanotube Based Metal/Semi- conductor/Metal Intramolecular Junctions. Nanotechnology, 16, 230.
http://dx.doi.org/10.1088/0957-4484/16/2/008

[5]   Filiz, S. and Aydogdu, M. (2010) Axial Vibration of Carbon Nanotube Heterojunctions Using Nonlocal Elasticity. Computational Materials Science, 49, 619-627.
http://dx.doi.org/10.1016/j.commatsci.2010.06.003

[6]   Yengejeh, S.I., Zadeh, M.A. and Ochsner, A. (2014) Numerical Modeling of Eigenmodes and Eigenfrequencies of Hetero-Junction Carbon Nanotubes with Pentagon-Heptagon Pair Defects. Computational Materials Science, 92, 76-83. http://dx.doi.org/10.1016/j.commatsci.2014.05.015

[7]   Ren, C., Xu, Z., Zhang, W., Li, Y., Zhu, Z. and Huai, P. (2010) Theoretical Study of Heat Conduction in Carbon Nanotube Hetero-Junctions. Physics Letters A, 374, 1860-1865.
http://dx.doi.org/10.1016/j.physleta.2010.02.028

[8]   Xu, B., Ouyang, J., Xu, Y., Wu, M.S., Liu, G. and Ouyang, C.Y. (2013) Electronic Transport Characteristic of an Individual CNx/C Nanotube Schottky Junction. Computational Materials Science, 68, 367-370. http://dx.doi.org/10.1016/j.commatsci.2012.11.013

[9]   Silvestri, L., Cervenka, J., Prawer, S. and Ladouceur, F. (2013) First Principle Study of Valence-Band Offsets at AlN/ Diamond Heterojunctions. Diamond and Related Materials, 31, 25-29.
http://dx.doi.org/10.1016/j.diamond.2012.10.010

[10]   Longo, L., Carbonera, C., Pellegrino, A., Perin, N., Schimperna, G., Tacca, A. and Po, R. (2012) Comparison between Theoretical and Experimental Electronic Properties of Some Popular Donor Polymers for Bulk-Heterojunction Solar Cells. Solar Energy Materials & Solar Cells, 97, 139-149.
http://dx.doi.org/10.1016/j.solmat.2011.09.035

[11]   Munoz, A., Pérez, R., Durán, J.C. and Flores, F. (1989) A Theoretical Analysis of the Heterojunction Band Offsets as Controlled by Interlayer Deposition. Surface Science, 211-212, 503-510.
http://dx.doi.org/10.1016/0039-6028(89)90807-8

[12]   Zemzemi, M. and Alaya, S. (2013) Band Offset of the ZnO/Cu2O Heterojunction from ab Initio Calculations. Superlattices and Microstructures, 64, 311-318.
http://dx.doi.org/10.1016/j.spmi.2013.09.041

[13]   Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Lamham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S. and Pople, J.A. (2004) Gaussian Inc., Wallingford.

[14]   El-Barbary, A.A., Lebda, H.I. and Kamel, M.A. (2009) The High Conductivity of Defect Fullerene C40 Cage. Computational Materials Science, 46, 128-132.
http://dx.doi.org/10.1016/j.commatsci.2009.02.034

[15]   Hindi, A. and El-Barbary, A.A. (2015) Hydrogen Binding Energy of Halogenated C40 Cage: An Intermediate between Physisorption and Chemisorption. Journal of Molecular Structure, 1080, 169-175.
http://dx.doi.org/10.1016/j.molstruc.2014.09.034

[16]   El-Barbary, A.A. (2015) 1H and 13C NMR Chemical Shift Investigations of Hydrogenated Small Fullerene Cages Cn, CnH, CnHn and CnHn+1: n = 20, 40, 58, 60. Journal of Molecular Structure, 1097, 76-86.
http://dx.doi.org/10.1016/j.molstruc.2015.05.015

[17]   El-Barbary, A.A., Eid, K.M., Kamel, M.A. and Hassan, M.M. (2013) Band Gap Engineering in Short Heteronanotube Segments via Monovacancy Defects. Computational Materials Science, 69, 87-94.
http://dx.doi.org/10.1016/j.commatsci.2012.10.035

[18]   El-Barbary, A.A., Ismail, G.H. and Babeer, A.M. (2013) Effect of Monovacancy Defects on Adsorbing of CO, CO2, NO and NO2 on Carbon Nanotubes: First Principle Calculations. Journal of Surface Engineered Materials and Advanced Technology, 3, 287-294. http://dx.doi.org/10.4236/jsemat.2013.34039

[19]   El-Barbary, A.A., Eid, K.M., Kamel, M.A., Osman, H.M. and Ismail, G.H. (2014) Effect of Tubular Chiralities and Diameters of Single Carbon Nanotubes on Gas Sensing Behavior: A DFT Analysis. Journal of Surface Engineered Materials and Advanced Technology, 4, 66-74.
http://dx.doi.org/10.4236/jsemat.2014.42010

[20]   El-Barbary, A.A., Eid, K.M., Kamel, M.A., Osman, H.M. and Ismail, G.H. (2015) Adsorption of CO, CO2, NO and NO2 on Carbon Boron Nitride Hetero Junction: DFT Study. Journal of Surface Engineered Materials and Advanced Technology, 5, 169-176. http://dx.doi.org/10.4236/jsemat.2015.54019

[21]   Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. Journal of Chemical Physics, 98, 5648. http://dx.doi.org/10.1063/1.464913

[22]   Becke, A.D. (1998) Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38, 3098-3100. http://dx.doi.org/10.1103/PhysRevA.38.3098

[23]   Chang, H., Lee, J.D. Lee, S.M. and Lee, Y.H. (2001) Adsorption of NH3 and NO2 Molecules on Carbon Nanotubes. Applied Physics Letters, 79, 3863. http://dx.doi.org/10.1063/1.1424069

[24]   Garcia, A.L.E., Baltazar, S.E., Romero, A.H., Perez Robles, J.F. and Rubio, A. (2008) Influence of S and P Doping in a Graphene Sheet. Journal of Computational and Theoretical Nanoscience, 5, 1-9.
http://dx.doi.org/10.1166/jctn.2008.1123

[25]   El-Barbary, A.A. (2015) The Surface Reactivity and Electronic Properties of Small Hydrogenation Fullerene Cages. Journal of Surface Engineered Materials and Advanced Technology, 5, 162-168.
http://dx.doi.org/10.4236/jsemat.2015.53018

 
 
Top