Simulation of Time-Dependent Schrödinger Equation in the Position and Momentum Domains

Show more

References

[1] Griffiths, D.J. (2005) Introduction to Quantum Mechanics. 2nd Edition, Prentice Hall, New Jersey.

[2] Hamming, R.W. (1973) Numerical Methods for Scientists and Engineers. 2nd Edition, Dover, New York.

[3] Kahaner, D., Moler, C. and Nash, S. (1989) Numerical Methods and Software. Prentice Hall, Upper Saddle River.

[4] Moxley III, F.I., Zhu, F. and Dai, W. (2012) A Generalized FDTD Method with Absorbing Boundary Condition for Solving a Time-Dependent Linear Schrödinger Equation. American Journal of Computational Mathematics, 2, 163-172.

http://dx.doi.org/10.4236/ajcm.2012.23022

[5] Bracewell, R.N. (2000) The Fourier Transform and Its Applications. 3rd Edition, McGraw-Hill, Boston.

[6] Frigo, M. and Johnson, S.G. (2005) The Design and Implementation of FFTW3. Proceedings of the IEEE, 93, 216-231.

http://dx.doi.org/10.1109/JPROC.2004.840301

[7] Askar, A. and Cakmak, A. (1978) Explicit Integration Method for the Time-Dependent Schrödinger Equation for Collision Problems. Journal of Chemical Physics, 68, 2794-2798.

http://dx.doi.org/10.1063/1.436072

[8] Maestri, J.J., Landau, R.H. and Páez, M.J. (2000) Two-Particle Schrödinger Equation Animations of Wavepacket Wave-Packet Scattering. American Journal of Physics, 68, 1113-1119.

http://dx.doi.org/10.1119/1.1286310

[9] Soriano, A., Navarro, E.A., Porti, J.A. and Such, V. (2004) Analysis of the Finite Difference Time Domain Technique to Solve the Schrödinger Equation for Quantum Devices. Journal of Applied Physics, 95, 8011-8018.

http://dx.doi.org/10.1063/1.1753661

[10] Sullivan, D.M. (2012) Quantum Mechanics for Electrical Engineers. John Wiley and Sons, Hoboken.

http://dx.doi.org/10.1002/9781118169780

[11] Visscher, P. (1991) A Fast Explicit Algorithm for the Time-Dependent Schrödinger Equation. Computers in Physics, 5, 596-598.

http://dx.doi.org/10.1063/1.168415

[12] Chen, Z.D., Zhang, J.Y. and Yu, Z.P. (2009) Solution of the Time-Dependent Schrödinger Equation with Absorbing Boundary Conditions. Journal of Semiconductors, 30, 012001-1-012001-6.

[13] Hunter, J.D. (2007) Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9, 90-95.

http://dx.doi.org/10.1109/MCSE.2007.55