JCT  Vol.6 No.10 , September 2015
Cancer Therapy Using Antibiotics
ABSTRACT
Anticancer antibiotics have made a successful impact in the field of chemotherapeutics. For most of them, DNA is the molecular target. Some act as DNA intercalators or some prevent DNA repair among other mechanisms of actions, they are seen to have. The major disadvantages of these drugs though are the constant side effects and toxicities. With more focus on discovery of new drugs with newer scaffolds, the urge to discover and modify anticancer antibiotics is being lost. Modifications or even the wider research can yield newer better drugs for clinical use. The review here discusses the current antibiotic therapeutics, newer discoveries in the field as well ideas for future research.

Cite this paper
Bhattacharya, B. and Mukherjee, S. (2015) Cancer Therapy Using Antibiotics. Journal of Cancer Therapy, 6, 849-858. doi: 10.4236/jct.2015.610093.
References
[1]   Curley, S.A., Izzo, F., Delrio, P., Ellis, L.M., Granchi, J., Vallone, P., Fiore, F., Pignata, S., Daniele, B. and Cremona, F. (1999) Radiofrequency Ablation of Unresectable Primary and Metastatic Hepatic Malignancies: Results in 123 Patients. Annals of Surgery, 230, 1-8.
http://dx.doi.org/10.1097/00000658-199907000-00001

[2]   Nudelman, A., Gnizi, E., Katz, Y., Azulai, R., Cohen-Ohana, M., Zhuk, R., Sampson, S.R., Langzam, L., Fibach, E., Prus, E., Pugach, V. and Rephaeli, A. (2001) Prodrugs of Butyric Acid. Novel Derivatives Possessing Increased Aqueous Solubility and Potential for Treating Cancer and Blood Diseases. European Journal of Medicinal Chemistry, 36, 63-74.
http://dx.doi.org/10.1016/S0223-5234(00)01199-5

[3]   Corrie, G.P. (2008) Cytotoxic Chemotherapy: Clinical Aspects. Medicine, 36, 24-28.
http://dx.doi.org/10.1016/j.mpmed.2007.10.012

[4]   De Vita Jr., V.T. and Chu, E. (2008) A History of Cancer Chemotherapy. Cancer Research, 68, 8643-8653.
http://dx.doi.org/10.1158/0008-5472.CAN-07-6611

[5]   Payne, S. and Miles, D. (2008) Mechanisms of Anticancer Drugs. CRC Press, 34-46.
http://cw.tandf.co.uk/scottbrownent/sample-material/Chapter-4-Mechanisms-of-anticancer-drugs.pdf
http://dx.doi.org/10.1201/b15118-6


[6]   Skipper, H.E., Schabel, F.M. and Wilcox, W.S. (1964) Experimental Evaluation of Potential Anticancer Agents. XIII. On the Criteria and Kinetics Associated with “Curability” of Experimental Leukemia. Cancer Chemotherapy Reports, 35, 1-111.

[7]   Schütze, M., Boeing, H., Pischon, T., Rehm, J., Kehoe, T., Gmel, G., Olsen, A., Tjonneland, A.M., Dahm, C.C., Overvad, K., Clavel-Chapelon, F., Boutron-Ruault, M.C., Trichopoulou, A., Benetou, V., Zylis, D., Kaaks, R., Rohrmann, S., Palli, D., Berrino, F., Tumino, R., Vineis, P., Rodríguez, L., Agudo, A., Sánchez, M.J., Dorronsoro, M., Chirlaque, M.D., Barricarte, A., Peeters, P.H., van Gils, C.H., Khaw, K.T., Wareham, N., Allen, N.E., Key, T.J., Boffetta, P., Slimani, N., Jenab, M., Romaguera, D., Wark, P.A., Riboli, E. and Bergmann, M.M. (2011) Alcohol Attributable Burden of Incidence of Cancer in Eight European Countries Based on Results from Prospective Cohort Study. BMJ, 342, d1584.
http://dx.doi.org/10.1136/bmj.d1584

[8]   Sasco, A.J., Secretan, M.B. and Straif, K. (2004) Tobacco Smoking and Cancer: A Brief Review of Recent Epidemiological Evidence. Lung Cancer, 45, S3-S9.
http://dx.doi.org/10.1016/j.lungcan.2004.07.998

[9]   Anand, P., Kunnumakkara, A.B., Sundaram, C., Harikumar, K.B., Tharakan, S.T., Lai, O.S., Sung, B. and Aggarwal, B.B. (2008) Cancer Is a Preventable Disease That Requires Major Lifestyle Changes. Pharmaceutical Research, 25, 2097-2116.
http://dx.doi.org/10.1007/s11095-008-9661-9

[10]   Foote, M.A. (1998) The Importance of Planned Dose of Chemotherapy on Time: Do We Need to Change Our Clinical Practice? The Oncologist, 3, 365-368.

[11]   Tacar, O., Sriamornsak, P. and Dass, C.R. (2013) Doxorubicin: An Update on Anticancer Molecular Action, Toxicity and Novel Drug Delivery Systems. Journal of Pharmacy and Pharmacology, 65, 157-170.
http://dx.doi.org/10.1111/j.2042-7158.2012.01567.x

[12]   Brockmann, H. (1963) Anthracyclinones and Anthracyclines. (Rhodomycinone, Pyrromycinone and Their Glycosides). Fortschritte der Chemie organischer Naturstoffe, 21, 121-182.

[13]   Zunino, F. and Capranico, G. (1990) DNA Topoisomerase II as the Primary Target of Anti-Tumor Anthracyclines. Anti-Cancer Drug Design, 5, 307-317.

[14]   Arcamone, F. (1985) Properties of Antitumor Anthracyclines and New Developments in Their Application: Cain Memorial Award Lecture. Cancer Research, 45, 5995-5999.

[15]   Cortes-Funes, H. and Coronado, C. (2007) Role of Anthracyclines in the Era of Targeted Therapy. Cardiovascular Toxicology, 7, 56-60.
http://dx.doi.org/10.1007/s12012-007-0015-3

[16]   Kuznetsov, D.D., Alsikafi, N.F., O’Connor, R.C. and Steinberg, G.D. (2001) Intravesical Valrubicin in the Treatment of Carcinoma in Situ of the Bladder. Expert Opinion on Pharmacotherapy, 2, 1009-1013.

[17]   Minotti, G., Menna, P., Salvatorelli, E., Cairo, G. and Gianni, L. (2004) Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacological Reviews, 56, 185-229.
http://dx.doi.org/10.1124/pr.56.2.6

[18]   Arcamone, F., Cassinelli, G., Fantini, G., Grein, A., Orezzi, P., Pol, C. and Spalla, C. (1969) Adriamycin, 14-Hydroxydaunomycin, a New Antitumor Antibiotic from S. peucetius var. caesius. Biotechnology and Bioengineering, 11, 1101-1110.
http://dx.doi.org/10.1002/bit.260110607

[19]   Moore, S., Patel, R.P., Atherton, E., Kondo, M., Meienhofer, J. (1976) Synthesis and Some Properties and Antitumor Effects of the Actinomycin Lactam Analog, (Di(1-L-Alpha, Beta-Diaminopropionic))Actinomycin D1. Journal of Medicinal Chemistry, 19, 766-772.
http://dx.doi.org/10.1021/jm00228a006

[20]   Parker, C., Waters, R., Leighton, C., Hancock, J., Sutton, R., Moorman, A.V., Ancliff, P., Morgan, M., Masurekar, A., Goulden, N., Green, N., Révész, T., Darbyshire, P., Love, S. and Saha, V. (2010) Effect of Mitoxantrone on Outcome of Children with First Relapse of Acute Lymphoblastic Leukaemia (ALL R3): An Open-Label Randomised Trial. Lancet, 376, 2009-2017.
http://dx.doi.org/10.1016/S0140-6736(10)62002-8

[21]   Madathil, M.M., Bhattacharya, C., Yu, Z., Paul, R., Rishel, M.J. and Hecht, S.M. (2014) Modified Bleomycin Disaccharides Exhibiting Improved Tumor Cell Targeting. Biochemistry, 53, 6800-6810.
http://dx.doi.org/10.1021/bi501102z

[22]   Galm, U., Hager, M.H., Van Lanen, S.G., Ju, J., Thorson, J.S. and Shen, B. (2005) Antitumor Antibiotics: Bleomycin, Enediynes, and Mitomycin. Chemical Reviews, 105, 739-758.
http://dx.doi.org/10.1021/cr030117g

[23]   Sparreboom, A., Nooter, K. and Verwej, J. (2002) The Cancer Handbook. John Wiley & Sons Inc., Hoboken.

[24]   Miyagawa, N., Sasaki, D., Matsuoka, M., Imanishi, M., Ando, T. and Sugiura, Y. (2003) DNA Cleavage Characteristics of Non-Protein Enediyne Antibiotic N1999A2. Biochemical and Biophysical Research Communications, 306, 87-92.
http://dx.doi.org/10.1016/S0006-291X(03)00925-2

[25]   Shao, R.G. and Zhen, Y.S. (2008) Enediyne Anticancer Antibiotic Lidamycin: Chemistry, Biology and Pharmacology. Anti-Cancer Agents in Medicinal Chemistry, 8, 123-131.
http://dx.doi.org/10.2174/187152008783497055

[26]   Bérdy, J. (2012) Thoughts and Facts about Antibiotics: Where We Are Now and Where We Are Heading. The Journal of Antibiotics, 65, 385-395.
http://dx.doi.org/10.1038/ja.2012.27

[27]   NCI.
http://www.cancer.gov/about-cancer/treatment/drugs

[28]   Tanaka, N., Okabe, T., Isono, F., Kashiwagi, M., Nomoto, K., Takahashi, M., Shimazu, A. and Nishimura, T. (1985) Lactoquinomycin, a Novel Anticancer Antibiotic. I. Taxonomy, Isolation and Biological Activity. The Journal of Antibiotics, 38, 1327-1332.
http://dx.doi.org/10.7164/antibiotics.38.1327

[29]   Oh, K.T., Oh, Y.T., Oh, N.M., Kim, K., Lee, D.H. and Lee, E.S. (2009) A Smart Flower-Like Polymeric Micelle for pH-Triggered Anticancer Drug Release. International Journal of Pharmaceutics, 375, 163-169.
http://dx.doi.org/10.1016/j.ijpharm.2009.04.005

[30]   Xing, T., Mao, C.Q., Lai, B. and Yan, L.F. (2012) Synthesis of Disulfide-Cross-Linked Polypeptide Nanogel Conjugated with a Near-Infrared Fluorescence Probe for Direct Imaging of Reduction-Induced Drug Release. ACS Applied Materials & Interfaces, 4, 5662-5672.
http://dx.doi.org/10.1021/am301600u

[31]   Manome, Y., Kobayashi, T., Mori, M., Suzuki, R., Funamizu, N., Akiyama, N., Inoue, S., Tabata, Y. and Watanabe, M. (2006) Local Delivery of Doxorubicin for Malignant Glioma by a Biodegradable PLGA Polymer Sheet. Anticancer Research, 26, 3317-3326.

[32]   Acharya, S. and Sahoo, K.S. (2011) PLGA Nanoparticles Containing Various Anticancer Agents and Tumour Delivery by EPR Effect. Advanced Drug Delivery Reviews, 63, 170-183.
http://dx.doi.org/10.1016/j.addr.2010.10.008

[33]   Loskotová, H. and Brabec, V. (1999) DNA Interactions of Cisplatin Tethered to the DNA Minor Groove Binder Distamycin. European Journal of Biochemistry, 266, 392-402.
http://dx.doi.org/10.1046/j.1432-1327.1999.00866.x

[34]   Aich, P., Sen, R. and Dasgupta, D. (1992) Role of Magnesium Ion in the Interaction between Chromomycin A3 and DNA: Binding of Chromomycin A3-Mg2+ Complexes with DNA. Biochemistry, 31, 2988-2997.
http://dx.doi.org/10.1021/bi00126a021

[35]   Aich, P., Sen, R. and Dasgupta, D. (1992) Interaction between Antitumor Antibiotic Chromomycin A3 and Mg2+. I. Evidence for the Formation of Two Types of Chromomycin A3-Mg2+ Complexes. Chemico-Biological Interactions, 83, 23-33.
http://dx.doi.org/10.1016/0009-2797(92)90089-4

[36]   Mir, M.A. and Dasgupta, D. (2001) Interaction of Antitumor Drug, Mithramycin, with Chromatin. Biochemical and Biophysical Research Communications, 280, 68-74.
http://dx.doi.org/10.1006/bbrc.2000.4075

[37]   Das, S., Devi, P.G., Pal, S. and Dasgupta, D. (2005) Effect of Complex Formation between Zn2+ Ions and the Anticancer Drug Mithramycin upon Enzymatic Activity of Zinc(II)-Dependent Alcohol Dehydrogenase. Journal of Biological Inorganic Chemistry, 10, 25-32.
http://dx.doi.org/10.1007/s00775-004-0607-3

[38]   Bassett, S., Urrabaz, R. and Sun, D. (2004) Cellular Response and Molecular Mechanism of Antitumor Activity by Leinamycin in MiaPaCa Human Pancreatic Cancer Cells. Anticancer Drugs, 15, 689-696.
http://dx.doi.org/10.1097/01.cad.0000136886.72917.6f

[39]   Shirai, R., Shimazawa, R., Shichita, M., Takahashi, M., Hashimoto, Y. and Iwasaki, S. (1995) Cytotoxicity and DNA-Binding Property of Non-Diynene Class of Dynemicins and Aza-Anthraquinones. Nucleic Acids Symposium Series, No. 34, 151-152.

[40]   Nasser, M.W., Datta, J., Nuovo, G., Kutay, H., Motiwala, T., Majumder, S., Wang, B., Suster, S., Jacob, S.T. and Ghoshal, K. (2008) Down-Regulation of Micro-RNA-1 (miR-1) in Lung Cancer. Suppression of Tumorigenic Property of Lung Cancer Cells and Their Sensitization to Doxorubicin-Induced Apoptosis by miR-1. Journal of Biological Chemistry, 283, 33394-33405.
http://dx.doi.org/10.1074/jbc.M804788200

[41]   Kamat, A.M., DeHaven, J.I. and Lamm, D.L. (1999) Quinolone Antibiotics: A Potential Adjunct to Intravesical Chemotherapy for Bladder Cancer. Urology, 54, 56-61.
http://dx.doi.org/10.1016/S0090-4295(99)00064-3

[42]   Lin, X.P., Wen, Y., Li, M., Chen, Z., Guo, J., Song, Y. and Li, J.L. (2009) A New Strain of Streptomyces avermitilis Produces High Yield of Oligomycin A with Potent Anti-Tumor Activity on Human Cancer Cell Lines in Vitro. Applied Microbiology and Biotechnology, 81, 839-845.
http://dx.doi.org/10.1007/s00253-008-1684-y

[43]   Langer, S.W., Jensen, P.B. and Sehested, M. (2007) Other Uses of Dexrazoxane: Savene, the First Proven Antidote against Anthracycline Extravasation Injuries. Cardiovascular Toxicology, 7, 151-153.
http://dx.doi.org/10.1007/s12012-007-0021-5

[44]   Kleinerman, E.S., Zwelling, L.A., Schwartz, R. and Muchmore, A.V. (1982) Effect of L-Phenylalanine Mustard, Adriamycin, Actinomycin D, and 4’-(9-Acridinylamino)Methanesulfon-m-Anisidide on Naturally Occurring Human Spontaneous Monocyte-Mediated Cytotoxicity. Cancer Research, 42, 1692-1695.

[45]   Magae, J., Hosokawa, T., Ando, K., Nagai, K. and Tamura, G. (1982) Antitumor Protective Property of an Isoprenoid Antibiotic, Ascofuranone. The Journal of Antibiotics, 35, 1547-1552.
http://dx.doi.org/10.7164/antibiotics.35.1547

[46]   Magae, J., Nagai, K., Ando, K., Yamasaki, M. and Tamura, G. (1983) Effects of an Antitumor Agent, Ascofuranone, on the Macromolecular Syntheses of Intact Cells. The Journal of Antibiotics, 36, 892-899.
http://dx.doi.org/10.7164/antibiotics.36.892

[47]   Banerjee, A., Dahiya, M., Anand, M.T. and Kumar, S. (2013) Inhibition of Proliferation of Cervical and Leukemic Cancer Cells by Penicillin G. Asian Pacific Journal of Cancer Prevention, 14, 2127-2130.
http://dx.doi.org/10.7314/APJCP.2013.14.3.2127

[48]   Bhattacharya, B. and Turos, E. (2012) Synthesis and Biology of N-Thiolated β-Lactams. Tetrahedron, 68, 10665-10685.
http://dx.doi.org/10.1016/j.tet.2012.06.012

[49]   Huh, A.J. and Kwon, Y.J. (2011) “Nanoantibiotics”: A New Paradigm for Treating Infectious Diseases Using Nanomaterials in the Antibiotics Resistant Era. Journal of Controlled Release, 156, 128-145.
http://dx.doi.org/10.1016/j.jconrel.2011.07.002

[50]   Lamb, R., Ozsvari, B., Lisanti, C.L., Tanowitz, H.B., Howell, A., Martinez-Outschoorn, U.E., Sotgia, F. and Lisanti, M.P. (2015) Antibiotics That Target Mitochondria Effectively Eradicate Cancer Stem Cells, across Multiple Tumor Types: Treating Cancer Like an Infectious Disease. Oncotarget, 6, 4569-4584.

 
 
Top