[1] Adewuri, Y.G. (2001) Sonochemistry: Environmental Science and Engineering Applications. Industrial and Engineering Chemistry Research, 40, 4681-4175.
http://dx.doi.org/10.1021/ie010096l
[2] Park, B., Shin, D., Cho, E. and Khim, J. (2012) Effect of Ultrasonic Frequency and Power Density for Degradation of Dichloroacetonitrile by Sonolytic Ozonation. Japanese Journal of Applied Physics, 51, Article ID: 07GD07.
http://dx.doi.org/10.7567/JJAP.51.07GD07
[3] Xu, Z., Mochida, K., Naito, T. and Yasuda, K. (2012) Effects of Operational Conditions on 1,4-Dioxane Degradationby Combined Use of Ultrasound and Ozone Microbubbles. Japanese Journal of Applied Physics, 51, Article ID: 07GD08.
http://dx.doi.org/10.1143/JJAP.51.07GD08
[4] Cho, E., Park, B., Na, S. and Khim, J. (2012) Effects of Power Density and TiO2 Dose in the Sonocatalytic Degradationof Diethyl Phthalate Using High Frequency. Japanese Journal of Applied Physics, 51, Article ID: 07GD09.
http://dx.doi.org/10.1143/JJAP.51.07GD09
[5] Park, B., Cho, E., Park, H. and Khim, J. (2011) Sonophotocatalytic Destruction of Chloroform: Comparison of Processes and Synergistic Effects. Japanese Journal of Applied Physics, 50, Article ID: 07HE10.
[6] Naruke, Y. and Harada, H. (2011) Sonophotocatalytic Sonolysis of Short-Chain Organic Dicarboxylic Acid Solutions, Japanese Journal of Applied Physics, 50, 07HE15.
http://dx.doi.org/10.1143/JJAP.50.07HE15
[7] Kobayashi, D., Sano, K., Takeuchi, Y. and Terasaka, K. (2011) Effect of Irradiation Distance on Degradation of Phenol Using Indirect Ultrasonic Irradiation Method. Ultrasonics Sonochemistry, 18, 1205-1210.
http://dx.doi.org/10.1016/j.ultsonch.2011.01.010
[8] Kidak, R and Ince, N.H. (2006) Ultrasonic Destruction of Phenol and Substituted Phenols: A Review of Current Research. Ultrasonics Sonochemistry, 13, 195-199.
http://dx.doi.org/10.1016/j.ultsonch.2005.11.004
[9] Pétrier, C. and Francony, A. (1997) Ultrasonic Waste-Water Treatment: Incidence of Ultrasonic Frequency on the Rate of Phenol and Carbon Tetrachloride Degradation. Ultrasonics Sonochemistry, 4, 295-300.
http://dx.doi.org/10.1016/S1350-4177(97)00036-9
[10] Berlan, J., Trabelsi, F., Delmas, H., Wilhelm, A.M. and Petrignani, J.F. (1994) Oxidative Degradation of Phenol in Aqueous Media Using Ultrasound. Ultrasonics Sonochemistry, 1, S97-S102.
http://dx.doi.org/10.1016/1350-4177(94)90005-1
[11] Serpone, N., Terzian, R., Colarusso, P., Minero, C., Pelizzetti, E. and Hidaka, H. (1993) Sonochemical Oxidation of Phenol and Three of Its Intermediate Products in Aqueous Media: Catechol, Hydroquinone, and Benzoquinone. Kinetic and Mechanistic Aspects. Research on Chemical Intermediates, 18, 183-202.
http://dx.doi.org/10.1163/156856792X00281
[12] Kobayashi, D., Honma, C., Matsumoto, H., Takahashi, T., Shimada, Y., Kuroda, C., Otake, K. and Shono, A. (2014) Effect of Ultrasonic Frequency and Initial Concentration on Degradation of Methylene Blue. Japanese Journal of Applied Physics, 53, 07KE03.
http://dx.doi.org/10.7567/jjap.53.07ke03
[13] Kobayashi, D., Honma, C., Matsumoto, H., Takahashi, T., Kuroda, C., Otake, K. and Shono, A. (2014) Kinetics Analysis for Development of a Rate Constant Estimation Model for Ultrasonic Degradation Reaction of Methylene Blue. Ultrasonics Sonochemistry, 21, 1489-1495.
http://dx.doi.org/10.1016/j.ultsonch.2013.12.022
[14] Kobayashi, D., Honma, C., Suzuki, A., Takahashi, T., Matsumoto, H., Kuroda, C., Otake, K. and Shono, A. (2012) Comparison of Ultrasonic Degradation Rates Constants of Methylene Blue at 22.8 kHz, 127 kHz, and 490 kHz. Ultrasonics Sonochemistry, 19, 745-749.
http://dx.doi.org/10.1016/j.ultsonch.2012.01.004
[15] Son, Y., Cho, E., Lim, M. and Khim, J. (2010) Effects of Salt and pH on Sonophotocatalytic Degradation of Azo Dye Reactive Black 5. Japanese Journal of Applied Physics, 49, 07HE05.
http://dx.doi.org/10.1143/jjap.49.07he05
[16] Merouani, S. Hamdaoui, O., Saoudi, F. and Chiha, M. (2010) Sonochemical Degradation of Rhodamine B in Aqueous Phase: Effects of Additives. Chemical Engineering Journal, 158, 550-557.
http://dx.doi.org/10.1016/j.cej.2010.01.048
[17] Inoue, M., Okada, F., Sakurai, A. and Sakakibara, M. (2006) A New Development of Dyestuffs Degradation System Using Ultrasound. Ultrasonics Sonochemistry, 13, 313-320.
http://dx.doi.org/10.1016/j.ultsonch.2005.05.003
[18] Okitsu, K., Iwasaki, K., Yobiko, Y., Bandow, H., Nishimura, R. and Maeda, Y. (2005) Sonochemical Degradation of Azo Dyes in Aqueous Solution: ANew Heterogeneous Kinetics Model Taking into Account the Local Concentration of OH Radicals and Azo Dyes, Ultrasonics Sonochemistry, 12, 255-262.
http://dx.doi.org/10.1016/j.ultsonch.2004.01.038
[19] Kubo, M., Matsuoka, K., Takahashi, A., Shibasaki-Kitakawa, N. and Yonemoto, T. (2005) Kinetics of Ultrasonic Degradation of Phenol in the Presence of TiO2 Particles. Ultrasonics Sonochemistry, 12, 263-269.
http://dx.doi.org/10.1016/j.ultsonch.2004.01.039
[20] Sekiguchi, H. and Saita, Y. (2001) Effect of Alumina Particles on Sonolysis Degradation of Chlorobenzene in Aqueous Solution. Journal of Chemical Engineering of Japan, 34, 1045-1048.
http://dx.doi.org/10.1252/jcej.34.1045
[21] Honma, C., Kobayashi, D., Matsumoto, H., Takahashi, T., Kuroda, C., Otake, K. and Shono, A. (2013) Effect of Particle Addition on Degradation Rate of Methylene Blue in an Ultrasonic Field. Japanese Journal of Applied Physics, 52, 07HE11.
http://dx.doi.org/10.7567/jjap.52.07he11
[22] Contamine, R.F., Wilhelm, A.M., Berlan, J. and Delmas, H. (1995) Power Measurement in Sonochemistry. Ultrasonics Sonochemistry, 2, S43-S47.
http://dx.doi.org/10.1016/1350-4177(94)00010-p
[23] Lee, B.-N., Liaw, W.-D. and Lou, J.-C. (1999) Photocatalytic Decolorization of Methylene Blue in Aqueous TiO2 Suspension. Environmental Engineering Science, 16, 165-175.
http://dx.doi.org/10.1089/ees.1999.16.165