AAD  Vol.4 No.3 , September 2015
Activated Caspase-3 and Neurodegeneration and Synaptic Plasticity in Alzheimer’s Disease
In Alzheimer’s disease (AD) there is a loss of neurons in different areas of the brain, including hippocampus, temporal and frontal cortex. Molecular mechanism of neuronal death in AD is not clear. It seems that apoptosis is a major form of neuronal cell death in this neurodegenerative disease. Neurons in both experimental animals and AD brains showed apoptotic changes, including DNA fragmentation, microRNA expression and caspase-3 activation. Activated caspase-3 may lead to amyloid precursor protein (APP) cleavage, extracellular senile plaques (SPs) and intracellular neurofibrillary tangles (NFTs) formation and neuronal loss, and it contributes to synaptic plasticity and cognitive dysfunction, especially in early stage of AD. Moreover, changes of caspase-3 activity were observed after therapy with memantine (NMDA receptor antagonist), donepezil and ladostigil (acetylcholinesterase inhibitors) in AD patients. It has been shown that both mementine and acetylcholinesterase inhibitors protect neurons from the caspase-3 activation. It seems that caspase-3 may be a potential diagnostic factor and target for pharmacotherapy of AD patients.

Cite this paper
Płóciennik, A. , Prendecki, M. , Zuba, E. , Siudzinski, M. and Dorszewska, J. (2015) Activated Caspase-3 and Neurodegeneration and Synaptic Plasticity in Alzheimer’s Disease. Advances in Alzheimer's Disease, 4, 63-77. doi: 10.4236/aad.2015.43007.
[1]   Reitz, C., Brayne, C. and Mayeux, R. (2011) Epidemiology of Alzheimer disease. Nature Reviews. Neurology, 7, 137- 152. http://dx.doi.org/10.1038/nrneurol.2011.2

[2]   Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Cedarbaum, J., Green, R.C., Harvey, D., Jack, C.R., Jagust, W., Luthman, J., Morris, J.C., Petersen, R.C., Saykin, A.J., Shaw, L., Shen, L., Schwarz, A., Toga, A.W., Trojanowski, J.Q. and Alzheimer’s Disease Neuroimaging Initiative (2015) 2014 Update of the Alzheimer’s Disease Neuroimaging Initiative: A Review of Papers Published Since Its Inception. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 11, e1-e120.

[3]   Lyketsos, C.G., Carrillo, M.C., Ryan, J.M., Khachaturian, A.S., Trzepacz, P., Amatniek, J., Cedarbaum, J., Brashear, R. and Miller, D.S. (2011) Neuropsychiatric Symptoms in Alzheimer’s Disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7, 532-539.

[4]   Khan, S.M., Cassarino, D.S., Abramova, N.N., Keeney, P.M., Borland, M.K., Trimmer, P.A., Krebs, C.T., Bennett, J.C., Parks, J.K., Swerdlow, R.H., Parker Jr., W.D. and Bennett Jr., J.P. (2000) Alzheimer’s Disease Cybrids Replicate Beta-Amyloid Abnormalities through Cell Death Pathways. Annals of Neurology, 481, 148-155. http://dx.doi.org/10.1002/1531-8249(200008)48:2<148::AID-ANA3>3.0.CO;2-7

[5]   Hardy, J. (1997) Amyloid, the Presenilins and Alzheimer’s Disease. Trends in Neurosciences, 20, 154-159.

[6]   Alonso Vilatela, M.E., López-López, M. and Yescas-Gómez, P. (2012) Genetics of Alzheimer’s Disease. Archives of Medical Research, 43, 622-631. http://dx.doi.org/10.1016/j.arcmed.2012.10.017

[7]   Goedeke, L. and Fernández-Hernando, C. (2014) MicroRNAs: A Connection between Cholesterol Metabolism and Neurodegeneration. Neurobiology of Disease, 72, 48-53.

[8]   Koldamova, R., Staufenbiel, M. and Lefterov, I. (2005) Lack of ABCA1 Considerably Decreases Brain ApoE Level and Increases Amyloid Deposition in APP23 Mice. The Journal of Biological Chemistry, 280, 43224-43235. http://dx.doi.org/10.1074/jbc.M504513200

[9]   Karch, C.M. and Goate, A.M. (2015) Alzheimer’s Disease Risk Genes and Mechanisms of Disease Pathogenesis. Biological Psychiatry, 77, 43-51. http://dx.doi.org/10.1016/j.biopsych.2014.05.006

[10]   Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., et al. (2013) Meta-Analysis of 74,046 Individuals Identifies 11 new Susceptibility Loci for Alzheimer’s Disease. Nature Genetics, 45, 1452-1458. http://dx.doi.org/10.1038/ng.2802

[11]   Dorszewska, J., Róóycka, A., Oczkowska, A., Florczak-Wyspiańska, J., Prendecki, M., Dezor, M., Postrach, I., Jagodzinski, P.P. and Kozubski, W. (2014) Mutations of TP53 Gene and Oxidative Stress in Alzheimer’s Disease Patients. Advances in Alzheimer’s Disease, 3, 24-32.

[12]   Prendecki, M. and Dorszewska, J. (2014) The Role of MicroRNA in the Pathogenesis and Diagnosis of Neurodegenerative Diseases. Austin Alzheimer’s and Parkinson’s Disease, 1, 1-10.

[13]   Armstrong, R.A. (2013) What Causes Alzheimer’s Disease? Folia Neuropathologica, 51, 169-188.

[14]   Terry, R.D., Peck, A., DeTeresa, R., Schechter, R. and Horoupian, D.S. (1981) Some Morphometric Aspects of the Brain in Senile Dementia of the Alzheimer’s Type. Annals of Neurology, 10, 184-192.

[15]   Iversen, L.L., Mortishire-Smith, R.J., Pollack, S.J. and Shearmannn, M.S. (1995) The Toxicity in Vitro of Beta-Amyloid Protein. The Biochemical Journal, 311, 1-16. http://dx.doi.org/10.1042/bj3110001

[16]   Nicolas, M. and Hassan, B.A. (2014) Amyloid Precursor Protein and Neural Development. Development, 141, 2543- 2548. http://dx.doi.org/10.1242/dev.108712

[17]   Wolfie, M.S. (2007) When Loss Is Gain: Reduced Presenilin Proteolytic Function Leads to Increased Abeta42/Abeta40. Talking Point on the Role of Presenilin Mutations in Alzheimer Disease. EMBO Reports, 8, 136-140. http://dx.doi.org/10.1038/sj.embor.7400896

[18]   Dubey, M., Chaudhury, P., Kabiru, H. and Shea, T.B. (2008) Tau Inhibits Anterograde Axonal Transport and Perturbs Stability in Growing Axonal Neurites in Part by Displacing Kinesin Cargo: Neurofilaments Attenuate Tau-Mediated Neurite Instability. Cell Motility and the Cytoskeleton, 65, 89-99.

[19]   Sheng, J.G., Mrak, R.E. and Griffin, W.S. (1998) Progressive Neuronal DNA Damage Associated with Neurofibrillary Tangle Formation in Alzheimer’s Disease. Journal of Neuropathology and Experiential Neurology, 57, 323-328. http://dx.doi.org/10.1097/00005072-199804000-00003

[20]   Perl, D.P. (2010) Neuropathology of Alzheimer’s Disease. The Mount Sinai Journal of Medicine, 77, 32-42.

[21]   Forloni, G., Chiesa, R., Smiroldo, S., Verga, L., Salmona, M., Tagliavini, F. and Angeretti, N. (1993) Apoptosis Mediated Neurotoxicity Induced by Chronic Application of Beta Amyloid Fragment 25-35. Neuroreport, 4, 523-526. http://dx.doi.org/10.1097/00001756-199305000-00015

[22]   Loo, D.T., Copani, A., Pike, C.J., Whittemore, E.R., Walencewicz, A.J. and Cotman, C.W. (1993) Apoptosis Is Induced by Beta-Amyloid in Cultured Central Nervous System Neurons. Proceedings of the National Academy of Sciences of the United States of America, 90, 7951-7955.

[23]   Su, J.H., Anderson, A.J., Cummings, B.J. and Cotman, C.W. (1994) Immunohistochemical Evidence for Apoptosis in Alzheimer’s Disease. Neuroreport, 5, 2529-2533.

[24]   Kitamura, Y., Shimoharma, S., Kamoshima, W., Ota, T., Matsuoka, Y., Nomura, Y., Smith, M.A., Perry, G., Whitehouse, P.J. and Taniguchi, T. (1998) Alteration of Proteins Regulating Apoptosis, Bcl-2, Bcl-x, Bax, Bad, ICH-1 and CPP32, in Alzheimer’s Disease. Brain Research, 780, 260-269.

[25]   Nishimura, T., Akiyama, H., Yonehara, S., Kondo, H., Ikeda, K., Kato, M., Iseki, E. and Kosaka, K. (1995) Fas Antigen Expression in Brains of Patients with Alzheimer-Type Dementia. Brain Research, 695, 137-145.

[26]   Wolf, B.B., Schuler, M., Echeverri, F. and Green, D.R. (1999) Caspase-3 Is the Primary Activator of Apoptotic DNA Fragmentation via DNA Fragmentation Factor-45/Inhibitor of Caspase-Activated DNase Inactivation. The Journal of Biological Chemistry, 274, 30651-30656.

[27]   Su, J.H., Zhao, M., Anderson, A.J., Srinivasan, A. and Cotman, C.W. (2001) Activated Casapse-3 Expression in Alzheimer’s and Aged Control Brain: Correlation with Alzheimer Pathology. Brain Research, 898, 350-357. http://dx.doi.org/10.1016/S0006-8993(01)02018-2

[28]   Gastard, M.C., Troncoso, J.C. and Koliatsos, V.E. (2003) Caspase Activation in the Limbic Cortex of Subjects with Early Alzheimer’s Disease. Annals of Neurology, 54, 393-398.

[29]   Stadelmann, C., Deckwerth, T.L., Srinivasan, A., Bancher, C., Brück, W., Jellinger, K. and Lassmann, H. (1999) Activation of Casapse-3 in Single Neurons and Autophagic Granules of Granulovacuolar Degeneration in Alzheimer’s Disease. Evidence for Apoptotic Cell Death. The American Journal of Pathology, 155, 1459-1465. http://dx.doi.org/10.1016/S0002-9440(10)65460-0

[30]   Kovacs, D.M., Mancini, R., Henderson, J., Na, S.J., Schmidt, S.D., Kim, T.W. and Tanzi, R.E. (1999) Staurosporine-Induced Activation of Caspase-3 in Potentiated by Presenilin 1 Fanmilial Alzheimer’s Disease Mutations in Human Neuroglioma Cells. Journal of Neurochemistry, 73, 2278-2285.

[31]   Gervais, F.G., Xu, D., Robertson, G.S., Vaillancourt, J.P., Zhu, Y., Huang, J., LeBlanc, A., Smith, D., Rigby, M., Shearman, M.S., Clarke, E.E., Zheng, H., Van Der Ploeg, L.H., Ruffolo, S.C., Thornberry, N.A., Xanthoudakis, S., Zamboni, R.J., Roy, S. and Nicholson, D.W. (1997) Involvement of Caspases in Proteolytic Cleavage of Alzheimer’s Amyloid-Beta Precursor Protein and Amyloidogenic A Beta Peptide Formation. Cell, 97, 395-406. http://dx.doi.org/10.1016/S0092-8674(00)80748-5

[32]   Mann, D.M. (1978) Granulovacuolar Degeneration in Pyramidal Cells of the Hippocampus. Acta Neuropathologica, 42, 149-151. http://dx.doi.org/10.1007/BF00690983

[33]   Canu, N., Dus, L., Barbato, C., Ciotti, M.T., Brancolini, C., Rinaldi, A.M., Novak, M., Cattaneo, A., Bradbury, A. and Calissano, P. (1998) Tau Cleavage and Dephosporylation in Cerebellar Granule Neurons Undergoing Apoptosis. Journal of Neuroscience: The Official Journal of the Society of Neuroscience, 18, 7061-7074.

[34]   De Estable-Puig, R.F., Estable-Puig, J.F., Romero, C. and Estable, A.B. (1975) Pathological Study of the Cat Spinal Cord after Chronic Local Implantation of Aluminum Hydroxide III. Electron Microscopic Study of Neuronal and Glial Changes. Experimentalle Pathologie, 10, 184-198.

[35]   Monney, L., Olivier, R., Otter, I., Jansen, B., Poirier, G.G. and Borner, C. (1998) Role of an Acidic Compartment in Tumor-Necrosis-Factor-Alpha-Induced Production of Ceramide, Activation of Caspase-3 and Apoptosis. Europian Journal of Biochemistry/FEBS, 251, 295-303.

[36]   Ishisaka, R., Utsumi, T., Yabuki, M., Kanno, T., Furuno, T., Inoue, M. and Utsumi, K. (1998) Activation of Caspase- 3-Like Protease by Digitonin-Treated Lysosomes. FEBS Letters, 435, 233-236.

[37]   Bursch, W., Ellinger, A., Török, L., Parzefall, W., Coulibaly, S., Hochegger, K., Schörkhuber, M., Partik, G., Marian, B., Walker, R., Sikorska, M. and Schulte-Hermann, R. (1997) In Vitro Studies on Subtypes and Regulation of Active Cell Death. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 11, 579-88. http://dx.doi.org/10.1016/S0887-2333(97)00081-7

[38]   Clarke, P.G. (1990) Developmental Cell Death: Morphological Diversity and Multiple Mechanisms. Anatomy and Embryology, 181, 195-213. http://dx.doi.org/10.1007/bf00174615

[39]   Tesco, G., Kim, T-W., Diehlmann, A., Beyreuther, K. and Tanzi, R.E. (1998) Abrogation of the Presenilin 1/Beta-Catenin Interaction and Preservation of the Heterodimeric Presenilin 1 Complex Following Caspase Activation. The Journal of Biological Chemistry, 273, 33909-33914.

[40]   Siudziński, M., Suwalska, M., Plóciennik, A., et al. (2012) Mutations of Trp53 Gene and p53 Protein Levels in Double Transgenic Mouse Model of Alzheimer’s Disease. Proceedings of the 23rd European Students’ Conference, Berlin, 17-20 September 2012.

[41]   Zhang, Q., Wang, J.M. and Niu, Q. (2014) Caspase-3 Short Hairpin RNA Interference: Targeting of an Aluminium- Lesioned Animal Model of Alzheimer’s Disease. Alzheimer’s & Dementia, 10, 484.

[42]   Hwang, D.Y., Chae, K.R., Kang, T.S., Hwang, J.H., Lim, C.H., Kang, H.K., Goo, J.S., Lee, M.R., Lim, H.J., Min, S.H., Cho, J.Y., Hong, J.T., Song, C.W., Paik, S.G., Cho, J.S. and Kim, Y.K. (2002) Alterations in Behavior, Amyloid Beta-42, Caspase-3, and Cox-2 in Mutant PS2 Transgenic Mouse Model of Alzheimer’s Disease. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 16, 805-813. http://dx.doi.org/10.1096/fj.01-0732com

[43]   Zhang, Q., Zhang, X., Chen, J., Miao, Y. and Sun, A. (2009) Role of Caspase-3 in Tau Truncation at D421 Is Restricted in Transgenic Mouse Models for Tauopathies. Journal of Neurochemistry, 109, 476-484.

[44]   Zhang, N. and Fissore, R.A. (2014) Role of Caspase-3 Cleaved IP3 R1 on Ca2+ Homeostasis and Developmental Competence of Mouse Oocytes and Eggs. Journal of Cellular Physiology, 229, 1842-1854.

[45]   D’Amelio, M., Cavallucci, V., Middei, S., Marchetti, C., Pacioni, S., Ferri, A., Diamantini, A., De Zio, D., Carrara, P., Battistini, L., Moreno, S., Bacci, A., Ammassari-Teule, M., Marie, H. and Cecconi, F. (2011) Caspase-3 Triggers Early Synaptic Dysfunction in a Mouse Model of Alzheimer’s Disease. Nature Neuroscience, 14, 69-76. http://dx.doi.org/10.1038/nn.2709

[46]   Yang, D.S., Kumar, A., Stavrides, P., Peterson, J., Peterhoff, C.M., Pawlik, M., Levy, E., Cataldo, A.M. and Nixon, R.A. (2008) Neuronal Apoptosis and Autophagy Cross Talk in aging PS/APP Mice, a Model of Alzheimer’s Disease. The American Journal of Pathology, 173, 665-681.

[47]   Lewis, J., McGowan, E., Rockwood, J., Melrose, H., Nacharaju, P., Van Slegtenhorst, M., Gwinn-Hardy, K., Paul Murphy, M., Baker, M., Yu, X., Duff, K., Hardy, J., Corral, A., Lin, W.L., Yen, S.H., Dickson, D.W., Davies, P. and Hutton, M. (2000) Neurofibrillary Tangles, Amyotrophy and Progressive Motor Disturbance in Mice Expressing Mutant (P301L) Tau Protein. Nature Genetics, 25, 402-405.

[48]   Salvesen, G.S. and Dixit, V.M. (1997) Caspases: Intracellular Signaling by Proteolysis. Cell, 91, 443-446.

[49]   Krantic, S., Mechawar, N., Reix, S. and Quirion, R. (2005) Molecular Basis of Programmed Cell Death Involved in Neurodegeneration. Trends in Neurosciences, 28, 670-676.

[50]   Pellegrini, L., Passer, B.J., Tabaton, M., Ganjei, J.K. and D’Adamio, L. (1999) Alternative, Non-Secretase Processing of Alzheimer’s Beta-Amyloid Precursor Protein during Apoptosis by Caspase-6 and -8. The Journal of Biological Chemistry, 274, 21011-21016.

[51]   Parsons, C.G., Stöffler, A. and Danysz, W. (2007) Memantine: A NMDA Receptor Antagonist that Improves Memory by Restoration of Homeostasis in the Glutamatergic System—Too Little Activation Is Bad, Too Much Is Even Worse. Neuropharmacology, 53, 699-723.

[52]   Yazawa, K., Kihara, T., Shen, H., Shimmyo, Y., Niidome, T. and Sugimoto, H. (2006) Distinct Mechanisms Underlie Distinct Polyphenol-Induced Neuroprotection. FEBS Letters, 580, 6623-6628.

[53]   Tackenberg, C., Grinschgl, S., Trutzel, A., Santuccione, A.C., Frey, M.C., Konietzko, U., Grimm, J., Brandt, R. and Nitsch, R.M. (2013) NMDA Receptor Subunit Composition Determines Beta-Amyloid-Induced Neurodegeneration and Synaptic Loss. Cell Death & Disease, 4, e608.

[54]   Karolczak, D., Sawicka, E., Dorszewska, J., Radel, A., Bodnar, M., Blaszczyk, A., Jagielska, J. and Marszalek A. (2013) Memantine-Neuroprotective Drug in Aging Brain. Polish Journal of Pathology, 64, 196-203.

[55]   Van Dyck, C.H., Tariot, P.N., Meyers, B., Malca Resnick, E. and Memantine MEM-MD-01 Study Group (2007) A 24- Week Randomized, Controlled Trial of Memantine in Patients with Moderate-to-Severe Alzheimer Disease. Alzheimer Disease and Associated Disorders, 21, 136-143.

[56]   Winblad, B. and Poritis, N. (1999) Memantine in Severe Dementia: Results of the 9M-Best Study (Benefit and Efficacy in Severely Demented Patients during Treatment with Memantine). International Journal of Geriatric Psychiatry, 14, 135-146.

[57]   Peskind, E.R., Potkin, S.G., Pomara, N., Ott, B.R., Graham, S.M., Olin, J.T. and McDonald, S. (2006) Memantine Treatment in Mild to Moderate Alzheimer Disease: A 24-Week Randomized, Controlled Trial. The American Journal of Geriatric Psychiatry, 14, 704-715.

[58]   Bakchine, S. and Loft, H. (2008) Memantine Treatment in Patients with Mild to Moderate Alzheimer’s Disease: Results of a Randomised, Double-Blind, Placebo-Controlled 6-Month Study. Journal of Alzheimers Disease, 13, 97-107.

[59]   Porsteinsson, A.P., Grossberg, G.T., Mintzer, J., Olin, J.T. and Memantine MEM-MD-12 Study Group (2008) Memantine Treatment in Patients with Mild to Moderate Alzheimer’s Disease Already Receiving a Cholinesterase Inhibitor: A Randomized, Double-Blind, Placebo-Controlled Trial. Current Alzheimer Research, 5, 83-89. http://dx.doi.org/10.2174/156720508783884576

[60]   Reisberg, B., Doody, R., Stöffler, A., Schmitt, F., Ferris, S., Möbius, H.J. and Memantine Study Group (2003) Memantine in Moderate-to-Severe Alzheimer’s Disease. New England Journal of Medicine, 348, 1333-1341. http://dx.doi.org/10.1056/NEJMoa013128

[61]   Emre, M., Mecocci, P. and Stender, K. (2008) Pooled Analyses on Cognitive Effects of Memantine in Patients with Moderate to Severe Alzheimer’s Disease. Journal of Alzheimer’s Disease, 14, 193-199.

[62]   Mecocci, P., Bladström, A. and Stender, K. (2009) Effects of Memantine on Cognition in Patients with Moderate to Severe Alzheimer’s Disease: Post-Hoc Analyses of ADAS-Cog and SIB Total and Single-Item Scores from Six Randomized, Double-Blind, Placebo-Controlled Studies. International Journal of Geriatric Psychiatry, 24, 532-538. http://dx.doi.org/10.1002/gps.2226

[63]   Ferris, S., Ihl, R., Robert, P., Winblad, B., Gatz, G., Tennigkeit, F. and Gauthier S. (2009) Treatment Effects of Memantine on Language in Moderate to Severe Alzheimer’s Disease Patients. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 5, 369-374. http://dx.doi.org/10.1016/j.jalz.2009.05.604

[64]   Gauthier, S., Loft, H. and Cummings J. (2008) Improvement in Behavioural Symptoms in Patients with Moderate to Severe Alzheimer’s Disease by Memantine: A Pooled Data Analysis. International Journal of Geriatric Psychiatry, 23, 537-545. http://dx.doi.org/10.1002/gps.1949

[65]   Grossberg, G.T., Pejovic, V., Miller, M.L. and Graham, S.M. (2009) Memantine Therapy of Behavioral Symptoms in Community-Dwelling Patients with Moderate to Severe Alzheimer’s Disease. Dementia and Geriatric Cognitive Disorders, 27, 164-172. http://dx.doi.org/10.1159/000200013

[66]   Winblad, B., Gauthier, S., Aström, D. and Stender, K. (2010) Memantine Benefits Functional Abilities in Moderate to Severe Alzheimer’s Disease. The Journal of Nutrition, Health & Aging, 14, 770-774.

[67]   Shen, H., Kihara, T., Hongo, H., Wu, X., Kem, W.R., Shimohama, S., Akaike, A., Niidome, T. and Sugimoto H. (2010) Neuroprotection by Donepezil against Glutamate Excitotoxicity Involves Stimulation of Alpha7 Nicotinic Receptors and Internalization of NMDA Receptors. British Journal of Pharmacology, 161, 127-139. http://dx.doi.org/10.1111/j.1476-5381.2010.00894.x

[68]   Pakaski, M. and Kasa, P. (2003) Role of Acetylcholinesterase Inhibitors in the Metabolism of Amyloid Precursor Protein. Current Drug Targets. CNS and Neurological Disorders, 2, 163-171.

[69]   Yogev-Falach, M., Bar-Am, O., Amit, T., Weinreb, O. and Youdim, M.B. (2006) A Multifunctional, Neuroprotective Drug, Ladostigil (TV3326), Regulates Holo-APP Translation and Processing. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 20, 2177-2179. http://dx.doi.org/10.1096/fj.05-4910fje

[70]   Zhang, J., Zhu, D., Sheng, R., Wu, H., Hu, Y., Wang, F., Cai, T., Yang, B. and He, Q. (2009) BZYX, a Novel acetylcholinesterase Inhibitor, Significantly Improved Chemicals-Induced Learning and Memory Impairments on Rodents and Protected PC12 Cells from Apoptosis Induced by Hydrogen Peroxide. European Journal of Pharmacology, 613, 1-9. http://dx.doi.org/10.1016/j.ejphar.2009.03.054

[71]   Choong, I.C., Lew, W., Lee, D., Pham, P., Burdett, M.T., Lam, J.W., Wiesmann, C., Luong, T.N., Fahr, B., DeLano, W.L., McDowell, R.S., Allen, D.A., Erlanson, D.A., Gordon, E.M. and O’Brien T. (2002) Identification of Potent and Selective Small-Molecule Inhibitors of Caspase-3 through the Use of Extended Tethering and Structure-Based Drug Design. Journal of Medicinal Chemistry, 45, 5005-5022.

[72]   Allen, D.A., Pham, P., Choong, I.C., Fahr, B., Burdett, M.T., Lew, W., DeLano, W.L., Gordon, E.M., Lam, J.W., O’Brien, T. and Lee, D. (2003) Identification of Potent and Novel Small-Molecule Inhibitors of Caspase-3. Bioorganic & Medicinal Chemistry Letters, 13, 3651-3655.

[73]   Isabel, E., Black, W.C., Bayly, C.I., Grimm, E.L., Janes, M.K., McKay, D.J., Nicholson, D.W., Rasper, D.M., Renaud, J., Roy, S., Tam, J., Thornberry, N.A., Vaillancourt, J.P., Xanthoudakis, S. and Zamboni, R. (2003) Nicotinyl Aspartyl Ketones as Inhibitors of Caspase-3. Bioorganic & Medicinal Chemistry Letters, 13, 2137-2140. http://dx.doi.org/10.1016/S0960-894X(03)00390-1

[74]   Micale, N., Vairagoundar, R., Yakovlev, A.G. and Kozikowski, A.P. (2004) Design and Synthesis of a Potent and Selective Peptidomimetic Inhibitor of Caspase-3. Journal of Medicinal Chemistry, 47, 6455-6458.

[75]   Linton, S.D., Karanewsky, D.S., Ternansky, R.J., Chen, N., Guo, X., Jahangiri, K.G., Kalish, V.J., Meduna, S.P., Robinson, E.D., Ullman, B.R., Wu, J.C., Pham, B., Kodandapani, L., Smidt, R., Diaz, J.L., Fritz, L.C., von Krosigk, U., Roggo, S., Schmitz, A. and Tomaselli, K.J. (2002) Acyl Dipeptides as Reversible Caspase Inhibitors. Part 2: Further Optimization. Bioorganic & Medicinal Chemistry Letters, 12, 2973-2975.

[76]   Wang, Y., Jia, S., Tseng, B., Drewe, J. and Cai, S.X. (2007) Dipeptidyl Aspartyl Fluoromethylketones as Potent Caspase Inhibitors: Peptidomimetic Replacement of the P2 Amino Acid by 2-Aminoaryl Acids and Other Non-Natural Amino Acids. Bioorganic & Medicinal Chemistry Letters, 17, 6178-6182.

[77]   Guo, Z., Xian, M., Zhang, W., McGill, A. and Wang, P.G. (2001) N-Nitrosoanilines: A New Class of Caspase-3 Inhibitors. Bioorganic & Medicinal Chemistry, 9, 99-106.

[78]   Lee, D., Long, S.A., Adams, J.L., Chan, G., Vaidya, K.S., Francis, T.A., Kikly, K., Winkler, J.D., Sung, C.M., Debouck, C., Richardson, S., Levy, M.A., DeWolf Jr., W.E., Keller, P.M., Tomaszek, T., Head, M.S., Ryan, M.D., Haltiwanger, R.C., Liang, P.H., Janson, C.A., McDevitt, P.J., Johanson, K., Concha, N.O., Chan, W., Abdel-Meguid, S.S., Badger, A.M., Lark, M.W., Nadeau, D.P., Suva, L.J., Gowen, M. and Nuttall, M.E. (2000) Potent and Selective Nonpeptide Inhibitors of Caspases 3 and 7 Inhibit Apoptosis and Maintain Cell Functionality. Journal of Biological Chemistry, 275, 16007-16014.

[79]   Lee, D., Long, S.A., Murray, J.H., Adams, J.L., Nuttall, M.E., Nadeau, D.P., Kikly, K., Winkler, J.D., Sung, C.M., Ryan, M.D., Levy, M.A., Keller, P.M. and DeWolf Jr., W.E. (2001) Potent and Selective Nonpeptide Inhibitors of Caspases 3 and 7. Journal of Medicinal Chemistry, 44, 2015-2026.

[80]   Niu, F., Yu, S., Zhang, Z., Yi, X., Ye, L., Tang, W., Qiu, C., Wen, H., Sun, Y., Gao, J. and Guo, Y. (2014) A Novel Mutation in the PSEN2 Gene (N141Y) Associated with Early-Onset Autosomal Dominant Alzheimer’s Disease in a Chinese Han Family. Neurobiology of Aging, 35, 2420.e1-2420.e5.

[81]   Neely Kayala, K.M., Dickinson, G.D., Minassian, A., Walls, K.C., Green, K.N. and Laferla, F.M. (2012) Presenilin-Null Cells Have Altered Two-Pore Calcium Channel Expression and Lysosomal Calcium: Implications for Lysosomal Function. Brain Research, 1489, 8-16.

[82]   Hansson, C.A., Popescu, B.O., Laudon, H., Cedazo-Minguez, A., Popescu, L.M., Winblad, B. and Ankarcrona, M. (2006) Caspase Cleaved Presenilin-1 Is Part of Active Gamma-Secretase Complexes. Journal of Neurochemistry, 97, 356-364. http://dx.doi.org/10.1111/j.1471-4159.2006.03735.x

[83]   Zhang, J., Kang, D.E., Xia, W., Okochi, M., Mor, H., Selkoe, D.J. and Koo, E.H. (1998) Subcellular Distribution and Turnover of Presenilins in Transfected Cells. Journal of Biological Chemistry, 273, 12436-12442. http://dx.doi.org/10.1074/jbc.273.20.12436

[84]   Pasternak, S.H., Bagshaw, R.D., Guiral, M., Zhang, S., Ackerley, C.A., Pak, B.J., Callahan, J.W. and Mahuran, D.J. (2003) Presenilin-1, Nicastrin, Amyloid Precursor Protein, and Gamma-Secretase Activity Are Co-Localized in the Lysosomal Membrane. Journal of Biological Chemistry, 278, 26687-26694. http://dx.doi.org/10.1074/jbc.M304009200

[85]   Vetrivel, K.S., Cheng, H., Lin, W., Sakurai, T., Li, T., Nukina, N., Wong, P.C., Xu, H. and Thinakaran, G. (2004) Association of Gamma-Secretase with Lipid Rafts in Post-Golgi and Endosome Membranes. Journal of Biological Chemistry, 279, 44945-44954. http://dx.doi.org/10.1074/jbc.M407986200

[86]   Uemura, K., Kuzuya, A., Shimozono, Y., Aoyagi, N., Ando, K., Shimohama, S. and Kinoshita, A. (2007) GSK3Beta Activity Modifies the Localization and Function of Presenilin 1. Journal of Biological Chemistry, 282, 15823-15832. http://dx.doi.org/10.1074/jbc.M610708200

[87]   Hansson, C.A., Frykman, S., Farmery, M.R., Tjernberg, L.O., Nilsberth, C., Pursglove, S.E., Ito, A., Winblad, B., Cowburn, R.F., Thyberg, J. and Ankarcrona, M. (2004) Nicastrin, Presenilin, APH-1, and PEN-2 Form Active Gamma-Secretase Complexes in Mitochondria. Journal of Biologiacal Chemistry, 279, 51654-51660. http://dx.doi.org/10.1074/jbc.M404500200

[88]   Raemaekers, T., Esselens, C. and Annaert, W. (2005) Presenilin 1: More than Just Gamma-Secretase. Biochemical Society Transactions, 33, 559-562. http://dx.doi.org/10.1042/BST0330559

[89]   Katayama, T., Imaizumi, K., Manabe, T., Hitomi, J., Kudo, T. and Tohyama, M. (2004) Induction of Neuronal Death by ER Stress in Alzheimer’s Disease. Journal of Chemical Neuroanatomy, 28, 67-78.

[90]   Thinakaran, G. and Sisodia, S.S. (2006) Presenilins and Alzheimer Disease: The Calcium Conspiracy. Nature Neuroscience, 9, 1354-1355. http://dx.doi.org/10.1038/nn1106-1354

[91]   McCarthy, J.V. (2005) Involvement of Presenilins in Cell-Survival Signalling Pathways. Biochemical Society Transactions, 33, 568-572. http://dx.doi.org/10.1042/BST0330568

[92]   Hamano, T., Mutoh, T., Tabira, T., Araki, W., Kuriyama, M., Mihara, T., Yano, S. and Yamamoto, H. (2005) Abnormal Intracellular Trafficking of High Affinity Nerve Growth Factor Receptor, Trk, in Stable Transfectants Expressing Presenilin 1 Protein. Brain Research. Molecular Brain Research, 137, 70-76.

[93]   Rocchi, A., Pellegrini, S., Siciliano, G. and Murri, L. (2003) Causative and Susceptibility Genes for Alzheimer’s Disease: A Review. Brain Research Bulletin, 61, 1-24.

[94]   Selkoe, D.J. (2001) Alzheimer’s Disease: Genes, Proteins, and Therapy. Physiological Reviews, 81, 741-766.

[95]   Crameri, A., Biondi, E., Kuehnle, K., Lütjohann, D., Thelen, K.M., Perga, S., Dotti, C.G., Nitsch, R.M., Ledesma, M.D. and Mohajeri, M.H. (2006) The Role of Seladin-1/DHCR24 in Cholesterol Biosynthesis, APP Processing and Abeta Generation in Vivo. The EMBO Journal, 25, 432-443.

[96]   Greeve, I., Hermans-Borgmeyer, I., Brellinger, C., Kasper, D., Gomez-Isla, T., Behl, C., Levkau, B. and Nitsch, R.M. (2000) The Human DIMINUTO/DWARF1 Homolog Seladin-1 Confers Resistance to Alzheimer’s Disease-Associated Neurodegeneration and Oxidative Stress. Journal of Neuroscience: The Official Journal of the Society of Neurocience, 20, 7345-7352.

[97]   Iivonen, S., Hiltunen, M., Alafuzoff, I., Mannermaa, A., Kerokoski, P., Puoliväli, J., Salminen, A., Helisalmi, S. and Soininen, H. (2002) Seladin-1 Transcription Is Linked to Neuronal Degeneration in Alzheimer’s Disease. Neuroscience, 113, 301-310. http://dx.doi.org/10.1016/S0306-4522(02)00180-X

[98]   Wang, J.Y. and Luo, Z.G. (2014) Non-Apoptotic Role of Caspase-3 in Synapse Refinement. Neuroscience Bulletin, 30, 667-670. http://dx.doi.org/10.1007/s12264-014-1454-4

[99]   Mattson, M.P., Keller, J.N. and Begley, J.G. (1998) Evidence for Synaptic Apoptosis. Experimental Neurology, 153, 35-48. http://dx.doi.org/10.1006/exnr.1998.6863

[100]   Cowan, C.M., Thai, J., Krajewski, S., Reed, J.C., Nicholson, D.W., Kaufmann, S.H. and Roskams, A.J. (2001) Caspases 3 and 9 Send a Pro-Apoptotic Signal from Synapse to Cell Body in Olfactory Receptor Neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21, 7099-7109.

[101]   Kudryashova, I.V., Onufriev, M.V., Kudryashov, I.E. and Gulyaeva, N.V. (2009) Caspase-3 Activity in Hippocampal Slices Reflects Changes in Synaptic Plasticity. Neuroscience and Behavioral Physiology, 39, 13-20. http://dx.doi.org/10.1007/s11055-008-9089-z

[102]   Snigdha, S., Smith, E.D., Prieto, G.A. and Cotman, C.W. (2012) Caspase-3 Activation as a Bifurcation Point between Plasticity and Cell Death. Neuroscience Bulletin, 28, 14-24.

[103]   Gilman, C.P. and Mattson, M.P. (2002) Do Apoptotic Mechanisms Regulate Synaptic Plasticity and Growth-Cone Motility? Neuromolecular Medicine, 2, 197-214.

[104]   Lu, C., Fu, W., Salvesen, G.S. and Mattson, M.P. (2002) Direct Cleavage of Ampa Receptor Subunit GluR1 and Suppression of AMPA Currents by Caspase-3: Implications for Synaptic Plasticity and Excitotoxic Neuronal Death. Neuromolecular Medicine, 1, 69-79.

[105]   Li, Z., Jo, J., Jia, J.M., Lo, S.C., Whitcomb, D.J., Jiao, S., Cho, K. and Sheng, M. (2010) Caspase-3 Activation via Mitochondria Is Required for Long-Term Depression and AMPA Receptor Internalization. Cell, 141, 859-871. http://dx.doi.org/10.1016/j.cell.2010.03.053

[106]   Stepanichev, M.Y., Kudryashova, I.V., Yakovlev, A.A., Onufriev, M.V., Khaspekov, L.G., Lyzhin, A.A., Lazareva, N.A. and Gulyaeva, N.V. (2005) Central Administration of a Caspase Inhibitor Impairs Shuttle-Box Performance in Rats. Neuroscience, 136, 579-591.

[107]   Huesmann, G.R. and Clayton, D.F. (2006) Dynamic Role of Postsynaptic Caspase-3 and BIRC4 in Zebra Finch Song- Response Habituation. Neuron, 52, 1061-1072.

[108]   Dash, P.K., Blum, S. and Moore, A.N. (2000) Caspase Activity Plays an Essential Role in Long-Term Memory. Neuroreport, 11, 2811-2816. http://dx.doi.org/10.1097/00001756-200008210-00040

[109]   Ambros, V. (2001) MicroRNAs: Tiny Regulators with Great Potential. Cell, 107, 823-826.

[110]   Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.

[111]   Fabian, M.R. and Sonenberg, N. (2012) The Mechanics of miRNA-Mediated Gene Silencing: A Look under the Hood of miRISC. Nature Structural & Molecular Biology, 19, 586-593.

[112]   Lewis, B.P., Burge, C.B. and Bartel, D.P. (2005) Conserved Seed Pairing, Often Flanked by Adenosines, Indicates That Thousands of Human Genes Are MicroRNA Targets. Cell, 120, 15-20.

[113]   Tsang, W.P. and Kwok, T.T. (2008) Let-7a MicroRNA Suppresses Therapeutics-Induced Cancer Cell Death by Targeting Caspase-3. Apoptosis: An International Journal on Programmed Cell Death, 13, 1215-1222.

[114]   Ni, J., Wang, X., Chen, S., Liu, H., Wang, Y., Xu, X., Cheng. J., Jia, J. and Zhen, X. (2015) MicroRNA Let-7c-5p Protects against Cerebral Ischemia Injury via Mechanisms Involving the Inhibition of Microglia Activation. Brain, Behavior, and Immunity [Epub Ahead of Print].

[115]   Burguillos, M.A., Deierborg, T., Kavanagh, E., Persson, A., Hajji, N., Garcia-Quintanilla, A., Cano, J., Brundin, P., Englund, E., Venero, J.L. and Joseph, B. (2011) Caspase Signalling Controls Microglia Activation and Neurotoxicity. Nature, 472, 319-324.

[116]   Li, Y., Tan, M.S., Jiang, T. and Tan, L. (2014) Microglia in Alzheimer’s Disease. BioMed Research International, 2014, Article ID: 437483. http://dx.doi.org/10.1155/2014/437483

[117]   Peng, G., Yuan, Y., He, Q., Wu, W. and Luo, B.Y. (2011) MicroRNA Let-7e Regulates the Expression of Caspase-3 during Apoptosis of PC12 Cells Following Anoxia/Reoxygenation Injury. Brain Research Bulletin, 86, 272-276. http://dx.doi.org/10.1016/j.brainresbull.2011.07.017

[118]   Li, T., Sun, Z.L. and Xie, Q.Y. (2015) Protective Effect of MicroRNA-30b on Hypoxia/Reoxygenation-Induced Apoptosis in H9C2 Cardiomyocytes. Gene, 561, 268-275.

[119]   Li, N., Kaur, S., Greshock, J., Lassus, H., Zhong, X., Wang, Y., Leminen, A., Shao, Z., Hu, X., Liang, S., Katsaros, D., Huang, Q., Bützow, R., Weber, B.L., Coukos, G. and Zhang, L. (2012) A Combined Array-Based Comparative Genomic Hybridization and Functional Library Screening Approach Identifies Mir-30d as an Oncomir in Cancer. Cancer Research, 72, 154-164.