IJG  Vol.6 No.8 , August 2015
Geological, Mineralogical and Geochemical Studies of Pyrite Deposits in the Eastern Part of Douala Sub-Basin (Cameroon, Central Africa)
ABSTRACT
Pyrite deposit of pK27, Douala sub-basin (Cameroon, Central Africa) was studied in a tropical forest setting physically and using X-ray diffraction and X-ray fluorescence spectrometry (XRF) in order to characterize the mineralization for his industrial utilization. The sedimentary materials from the pyrite deposit were grouped into five (05) main lithofacies, including four claystone facies and one conglomeratic facies. The mineralization occurs along the low slopes of valleys in light grey claystone facies situated on the bottom of outcrops with 80 to 200 cm thickness. The particle size distribution of clayey materials host rocks shows that they are essentially constituted of clay and silts fractions. However, their Sorting index (So) more than 4.5 corresponds to poorly sorted sediments and the torrential type; whereas their Coefficient of asymmetry (A) more than 1 indicates that the sorting is carried out towards fine particles. Macroscopically, pyrite in these materials is in crumbly and consolidated piles with aggregate pyrites in oolithic concretions, and globular, cubic, octaedric, massive and fossiliferous forms. The mineralogical compositions of these clayey materials indicate that they are essentially kaolinitic and illitic, followed by goethite, quartz, pyrite, halloysite, anatase and rutile with hematite as accessory minerals. Pyrite in sand fractions is associated with kyanite, grenat, rutile, diopside, muscovite and tourmaline the minerals which recognize the regional metamorphism. However, the specific chemical signature of SO3content high in clayey materials and abundant (50.86% - 57.64% SO3) in pyrite is characteristic of the pK27 pyritic formations in the eastern part of Douala sub-basin. Moreover, the Co:Ni ratios of pyrites approximately 0.25 to 0.8 are characteristic of sedimentary pyrites and also suggest an anoxic environment.

Cite this paper
Ngon, G. , Abomo, P. , Mbog, M. , Bitchong, A. , Mbaï, J. , Minyemeck, T. and Fouateu, R. (2015) Geological, Mineralogical and Geochemical Studies of Pyrite Deposits in the Eastern Part of Douala Sub-Basin (Cameroon, Central Africa). International Journal of Geosciences, 6, 882-893. doi: 10.4236/ijg.2015.68072.
References
[1]   Berner, R.A. (1984) Sedimentary Pyrite Formation: An Update. Geochimica et Cosmochimica Acta, 48, 605-615. http://dx.doi.org/10.1016/0016-7037(84)90089-9

[2]   Calvert, S.E., Thode, H.G., Yeung, D. and Karlin, R.E. (1996) A Stable Isotope Study of Pyrite Formation in the Late Pleistocene and Holocene Sediments of the Black Sea. Geochimica et Cosmochimica Acta, 60, 1261-1270. http://dx.doi.org/10.1016/0016-7037(96)00020-8

[3]   álvarez-Iglesias, P. and Rubio, B. (2012) Early Diagenesis of Organic-Matter-Rich Sediments in a ría Environment: Organic Matter Sources, Pyrites Morphology and Limitation of Pyritization at Depth. Estuarine, Coastal and Shelf Science, 100, 113-123. http://dx.doi.org/10.1016/j.ecss.2012.01.005

[4]   Taylor, K.G. and Macquaker, J.H.S. (2000) Early Diagenetic Pyrite Morphology in a Mudstone Dominated Succession: the Lower Jurassic Cleveland Ironstone Formation, Eastern England. Sedimentary Geology, 131, 77-86. http://dx.doi.org/10.1016/S0037-0738(00)00002-6

[5]   Bolücek, C. and Ilhan, B. (2006) A Survey of Pyritised Animal, Plant, and Trace Fossils and Concretionary Pyrites, Germav Formation, Southeastern Turkey. Comptes Rendus Geoscience, 338, 161-171.
http://dx.doi.org/10.1016/j.crte.2005.10.005

[6]   Laplaine, J. (1969) Indices minéraux et ressources minérales du Cameroun. Bulletin de la Direction des Mines et Géologie, RFC, 113-115.

[7]   Olivry, J.C. (1986) Fleuves et rivières du Cameroun. Meres, ORSTOM, Paris, 733 p.

[8]   Letouzey, R. (1985) Etude phytogéographique du Cameroun. Ed. P Le chevalier, Paris, 508 p.

[9]   SNH/UD (2005) Stratigraphie séquentielle et tectonique des dép?ts mésozo syn-rifts du Bassin de Kribi/Campo. Auteurs: Ntamak-Nida, M.J., Mpesse, J.E., Ketchemen-Tandia, B., Ndong Ondo, S., Courville, P. and Baudin, F., Rapport Interne, 134 p, 11 planches, 02 rapports annexes d’analyses.

[10]   Ntamak-Nida, M.J., Baudin, F., Schnyder, J., Makong, J.C., Komguem, P.B. and Abolo, G.M. (2008) Depositional Environments and Characterization of the Organic Matter of the Lower Mundeck Formation (Barremian ?-Aptian) of the Kribi-Campo Sub-Basin (South Cameroon): Implications for Petroleum Exploration. Journal of African Earth Sciences, 51, 207-230.
http://dx.doi.org/10.1016/j.jafrearsci.2008.01.006

[11]   Regnoult, J.M. (1986) Synthèse géologique du Cameroun. D.M.G., Yaoundé, 118p.

[12]   Miall, A.D. (1978) Lithofacies Types and Vertical Profile Models in Braided River Deposits: A Summary. In: Miall, A.D., Ed., Fluvial Sedimentology, Vol. 5, Canadian Society of Petroleum Geologists, Calgary, 859.

[13]   Postma, G. (1990) Depositional Architecture and Facies of River and Fan Deltas: A Synthesis. In: Colella, A., Prior, D.B., Eds., Coarse-Grained Deltas, Vol. 10, Blackwell Publishing Ltd., Oxford, 13-28.
http://dx.doi.org/10.1002/9781444303858.ch2

[14]   Berthois, L. (1975) Les roches sédimentaires: Etude sédimentologique des roches meubles. Doin, Paris, 279 p.

[15]   Parfenoff, A., Pomerol, C. and Tourenq, J. (1970) Les minéraux en grains: Méthodes d’études et détermination. Masson et Cie, Paris, 578 p.

[16]   Ngon Ngon, G.F., Mbog, M.B., Etame, J., Ntamak-Nida, M.J., Logmo, E.O., Gérard, M., Yongue-Fouateu, R. and Bilong, P. (2014) Geochemistry of the Paleocene-Eocene and Miocene-Pliocene Clayey Materials of the Eastern Part of the Wouri River (Douala Sub-Basin, Cameroon): Influence of Parent Rocks. Journal of African Earth Sciences, 91, 110-124. http://dx.doi.org/10.1016/j.jafrearsci.2013.12.005

[17]   Njike Ngaha, P.R. (2004) Palynostratigraphie et Reconstitution des Paléoenvironnements du Crétacé de l’Est du bassin Sédimentaire de Douala (Cameroun). Thèse de doctorat d’Etat, Université de Yaoundé I, Yaounde, 258 p.

[18]   Craig, J.R., Vokes, F.M. and Solberg, T.N. (1998) Pyrite: Physical and Chemical Textures. Mineral Deposita, 34, 82-102. http://dx.doi.org/10.1007/s001260050187

[19]   Vine, J.D. and Tourtelot, E.B. (1970) Geochemistry of Black Shale Deposits: A Summary Report. Economic Geology, 65, 253-272. http://dx.doi.org/10.2113/gsecongeo.65.3.253

[20]   Sawlowicz, Z. (2000) Framboids: From Their Origin to Application. Prace Mineralogiczne, 88, 1-80.

[21]   Roberts, F.I. (1982) Trace Element Chemistry of Pyrite: A Useful Guide to the Occurrence of Sulfide Base Metal Mineralization. Journal of Geochemical Exploration, 17, 49-62.
http://dx.doi.org/10.1016/0375-6742(82)90019-X

[22]   Bralia, A., Sabatini, G. and Troja, F. (1979) A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems. Mineral Deposita, 14, 353-374.

[23]   Huerta-Diaz, M.A. and Morse, J.W. (1992) Pyritization of Trace Metals in Anoxic Marine Sediments. Geochimica et Cosmochimica Acta, 56, 2681-2702.

 
 
Top