Back
 OJAP  Vol.4 No.3 , September 2015
The Influence of Eddy Diffusivity Variation on the Atmospheric Diffusion Equation
Abstract: The advection diffusion equation was solved analytically using separation of variables technique, considering first the wind speed and eddy diffusivity as constants; second as variables dependent on vertical height z. Comparison between predicted two models and observed concentration on Inshas, Cairo (Egypt) is done.
Cite this paper: Marrouf, A. , Essa, K. , El-Otaify, M. , Mohamed, A. and Ismail, G. (2015) The Influence of Eddy Diffusivity Variation on the Atmospheric Diffusion Equation. Open Journal of Air Pollution, 4, 109-118. doi: 10.4236/ojap.2015.43011.
References

[1]   Wark, K. and Waner, C.F. (1981) Air Pollution. Its Origin and Control. Harper and Row, New York.

[2]   Wilson, D.J. (1981) Along-Wind Diffusion of Source Transients. Atmospheric Environment, 15, 489-495.
http://dx.doi.org/10.1016/0004-6981(81)90179-7

[3]   Van Ulden, A.P. and Hotslag, A.A.M. (1985) Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications. Journal of Climate and Applied Meterology, 24, 1196-1207.
http://dx.doi.org/10.1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2

[4]   Pasquill, F. and Smith, F.B. (1983) Atmospheric Diffusion. 3rd Edition, Wiley, New York.

[5]   Seinfeld, J.H. (1986) Atmospheric Chemistry and Physics of Air Pollution. Wiley, New York.

[6]   Sharan, M., Singh, M.P. and Yadav, A.K. (1996) Mathematical Model for Atmospheric Dispersion in Low Winds with Eddy Diffusivities as Linear Functions of Downwind Distance. Atmospheric Environment, 30, 1137-1145.
http://dx.doi.org/10.1016/1352-2310(95)00368-1

[7]   Moreira, D.M., Tirabassi, T. and Carvalho, J.C. (2005) Plume Dispersion Simulation in Low Wind Conditions in the Stable and Convective Boundary Layers. Atmospheric Environment, 30, 3646-3650.
http://dx.doi.org/10.1016/j.atmosenv.2005.03.004

[8]   Cosemans, G., Kretzchmar, J. and Maes, G. (1992) The Belgian Emission Frequency Distribution Model IFDM. Proceedings of the DCAR Workshop on Objectives for Next Generation of Practical Short-Range Atmospheric Dispersion models, Riso, 149-150.

[9]   Olesen, H.R., Lofstorm, P., Berkowicz, R. and Jensen, A.B. (1992) An Improved Dispersion Model for Regulatory Use: The OML Model. In: van Dop, H. and Kallos, G., Eds., Air Pollution Modeling and Its Application IX, Plenum Press, New York.
http://dx.doi.org/10.1007/978-1-4615-3052-7_3

[10]   Hanna, S.R. and Chang, J.C. (1993) Hybrid Plume Dispersion Model (HPDM) Improvements and Testing at Three Field Sites. Atmospheric Environment, 27A, 1491-1508.
http://dx.doi.org/10.1016/0960-1686(93)90135-L

[11]   Carruthers, D.J., Edmunds, H.A., Ellis, K.L., McHugh, C.A., Davies, B.M. and Thomson, D.J. (1995) The Atmospheric Dispersion Modeling System (ADMS): Comparisons with Data from the Kincaid Experiment. International Journal of Environment and Pollution, 5, 213-228.

[12]   Gryning, S.E., Holtslag, A.A.M., Irwin, J.S. and Sivertsen, B. (1987) Applied Dispersion Modeling Based on Meteorological Scaling Parameters. Atmospheric Environment, 21, 79-89.
http://dx.doi.org/10.1016/0004-6981(87)90273-3

[13]   Holtslag, A.A.M. and Nieuwstadt, F.T.M. (1986) Scaling the Atmospheric Boundary Layer. Meterology, 36, 201-209.
http://dx.doi.org/10.1007/bf00117468

[14]   Palazzi, E., De Faveri, M., Fumarola, G. and Ferraiolla, G. (1982) Diffusion from a Steady Source of Short Duration. Atmospheric Environment, 16, 2785-2790.
http://dx.doi.org/10.1016/0004-6981(82)90029-4

[15]   Essa, K.S.M., Mina, A.N. and Higazy, M. (2011) Analytical Solution of Diffusion Equation in Two Dimensions Using Two Forms of Eddy Diffusivities. Romanian Journal of Physics, 56, 1228-1240.

[16]   Essa, K.S.M. and El-Otaify, M.S. (2007) Mathematical Model for Hermitized Atmospheric Dispersion in Low Winds with Eddy Diffusivities Linear Functions Downwind Distance. Meteorology and Atmospheric Physics, 96, 265-275.
http://dx.doi.org/10.1007/s00703-006-0208-5

[17]   Irving, J. and Mullineux, N. (1959) Mathematics in Physics and Engineering. Academic Press, New York.

[18]   Gradshteyn, I.S. and Ryzhik, I.M. (1965) Table of Integrals, Series and Products. 7th Edition, Academic Press, New York, 1160.

[19]   Golder, D. (1972) Relation among Stability Parameters in the Surface Layer. Boundary Layer Meteorology, 3, 47-58.
http://dx.doi.org/10.1007/BF00769106

[20]   Essa, K.S.M., Mubarak, F. and Khadra, S.A. (2005) Comparison of Some Sigma Schemes for Estimation of Air Pollutant Dispersion in Moderate and Low Winds. Atmospheric Science Letters, 6, 90-96.
http://dx.doi.org/10.1002/asl.94

 
 
Top