JBiSE  Vol.8 No.8 , August 2015
Late Effects of Radiation on Skeletal Muscle: An Open Field of Research
ABSTRACT
This paper presents an overview of the state of the art about the late effects of ionizing radiation on skeletal muscle, helping new research and showing unexplored areas. For this, it was evaluated the interest reported by the scientific literature regarding the late effects in skeletal muscle resulting from exposure to ionizing radiation. Original and experimental papers mainly containing the key expressions “ionizing radiation” and “effects on skeletal muscle” were searched in computerized databases, and published in any language. Only 33 papers matched the search criteria. Analyzing the investigated radioinduced biological effects in those contributions, four topics were identified as being of major interest: 1) alterations in cellular metabolism and protein degradation; 2) repercussions on satellite cells; 3) formation of fibrosis and muscle atrophy; 4) tissue regeneration. It was verified that no study evaluated possible late effects related to either morphology or properties of skeletal muscles after an exposure to ionizing radiation. Several aspects do not make possible a successful replication; all experiments of eligible group of articles are discussed, such as, lack of raw data, use of no sound methodology and inappropriate statistical technique. Briefly, the subject of this review is an open field of research.

Cite this paper
Viana, W. , Lambertz, D. , Borges, E. , Melo, J. , Lambertz, K. and Amaral, A. (2015) Late Effects of Radiation on Skeletal Muscle: An Open Field of Research. Journal of Biomedical Science and Engineering, 8, 555-570. doi: 10.4236/jbise.2015.88052.
References
[1]   USA/NTP (2011) Ionizing Radiation: X-Radiation and Gamma Radiation. Report on Carcinogens. 12th Edition, North Carolina.

[2]   Azevedo, A.C.P. (2009) Radioprotecao em Servicos de Saúde. FIOCRUZ Escola Nacional de Saúde Pública-CESTEH, Rio de Janeiro.

[3]   Oliveira, T. (2007) A importancia do acompanhamento nutricional para pacientes com cancer. Prática Hospitalar, 51, 150-154.

[4]   Brazil/INCA (2011)
http://www2.inca.gov.br/wps/wcm/connect/cancer/site/tratamento

[5]   Morris Jones, P.H. (1991) The Late Effects of Cancer Therapy in Childhood. British Journal of cancer, 64, 1-2.
http://dx.doi.org/10.1038/bjc.1991.228

[6]   Brazil/INCA (2010) Estimativas da incidência e mortalidade por cancer. Rio de Janeiro.

[7]   Meadows, A.T., Gallagher, J.A. and Bunin, G.R. (1992) Late Effects of Early Childhood Cancer Therapy. The British Journal of Cancer Supplement, 18, S92-S95.

[8]   Flann, K.L., LaStayo, P.C., McClain, D.A., Hazel, M. and Lindstedt, S.L. (2011) Muscle Damage and Muscle Remodeling: No Pain, No Gain? The Journal of Experimental Biology, 214, 674-679.
http://dx.doi.org/10.1242/jeb.050112

[9]   Messina, G. and Cossu, G. (2009) The Origin of Embryonic and Fetal Myoblasts: A Role of Pax3 and Pax7. Genes & Development, 23, 902-905.
http://dx.doi.org/10.1101/gad.1797009

[10]   Neumann, D.A. (2006) Cinesiologia de Aparelho Musculoesquelético: Fundamentos para Reabilitacao Física. Guanabara Koogan, Rio de Janeiro, 593 p.

[11]   Pratesi, A., Tarantini, F. and Di Bari, M. (2013) Skeletal Muscle: An Endocrine Organ. Clinical Cases in Mineral and Bone Metabolism, 10, 11-14.
http://dx.doi.org/10.11138/ccmbm/2013.10.1.011

[12]   Baar, K. and Hargreaves, M. (2011) Understanding the Regulation of Muscle Plasticity. Journal of Applied Physiology, 110, 256-257.
http://dx.doi.org/10.1152/japplphysiol.01332.2010

[13]   Kelencz, C.A., Munoz, I.S., Amorim, C.F. and Nicolau, R.A. (2010) Effect of Low-Power Gallium-Aluminum-Arsenium Noncoherent Light (640 nm) on Muscle Activity: A Clinical Study. Photomedicine and Laser Surgery, 28, 647-652.
http://dx.doi.org/10.1089/pho.2008.2467

[14]   Khan, M.Y. (1974) Radiation-Induced Changes in Skeletal Muscle. An Electron Microscopic Study. Journal of Neuropathology & Experimental Neurology, 33, 42-57.
http://dx.doi.org/10.1097/00005072-197401000-00004

[15]   Kim, J.P., Khalmuratova, R., Jeon, S.Y., Park, J.J., Hur, D.G., Ahn, S.K., et al. (2011) Quantitative Analysis of Myosin Heavy Chain Expression Change in Laryngeal Muscle after Irradiation in Rats. Yonsei Medical Journal, 52, 158-164. http://dx.doi.org/10.3349/ymj.2011.52.1.158

[16]   Leal Junior, E.C., Lopes-Martins, R.A., de Almeida, P., Ramos, L., Iversen, V.V. and Bjordal, J.M. (2010) Effect of Low-Level Laser Therapy (GaAs 904 nm) in Skeletal Muscle Fatigue and Biochemical Markers of Muscle Damage in Rats. European Journal of Applied Physiology, 108, 1083-1088.
http://dx.doi.org/10.1007/s00421-009-1321-1

[17]   Jurdana, M. (2008) Radiation Effects on Skeletal Muscle. Radiology and Oncology, 42, 15-22.
http://dx.doi.org/10.2478/v10019-007-0034-5

[18]   Hardee, J.P., Puppa, M.J., Fix, D.K., Gao, S., Hetzler, K.L., Bateman, T.A., et al. (2014) The Effect of Radiation Dose on Mouse Skeletal Muscle Remodeling. Radiology and Oncology, 48, 247-256.
http://dx.doi.org/10.2478/raon-2014-0025

[19]   Phelan, J.N. and Gonyea, W.J. (1997) Effect of Radiation on Satellite Cell Activity and Protein Expression in Overloaded Mammalian Skeletal Muscle. The Anatomical Record, 247, 179-188.
http://dx.doi.org/10.1002/(SICI)1097-0185(199702)247:2<179::AID-AR4>3.0.CO;2-T

[20]   Rosenblatt, J.D. and Parry, D.J. (1992) Gamma Irradiation Prevents Compensatory Hypertrophy of Overloaded Mouse Extensor Digitorum Longus Muscle. Journal of Applied Physiology, 73, 2538-2543.

[21]   Russell, J.A. and Connor, N.P. (2014) Effects of Age and Radiation Treatment on Function of Extrinsic Tongue Muscles. Radiation Oncology, 9, 254.
http://dx.doi.org/10.1186/s13014-014-0254-y

[22]   Shtifman, A., Pezone, M.J., Sasi, S.P., Agarwal, A., Gee, H., Song, J., et al. (2013) Divergent Modification of Low-Dose 56Fe-Particle and Proton Radiation on Skeletal Muscle. Radiation Research, 180, 455-464.
http://dx.doi.org/10.1667/RR3329.1

[23]   Horowits, R., Kempner, E.S., Bisher, M.E. and Podolsky, R.J. (1986) A Physiological Role for Titin and Nebulin in Skeletal Muscle. Nature, 323, 160-164.
http://dx.doi.org/10.1038/323160a0

[24]   Popova, M.F. and Il’iasova, S.G. (1978) Vliianie luchei gelii-neonovogo lazera na protsess regeneratsii obluchennoi transplantirovannoi skeletnoi myshtsy (Effect of a Helium-Neon Laser Beam on Regeneration of Irradiated Transplanted Skeletal Muscle). Bulletin of Experimental Biology and Medicine, 86, 64-67.

[25]   Wirtz, P., Loermans, H. and Rutten, E. (1982) Effects of Irradiation on Regeneration in Dystrophic Mouse Leg Muscles. British Journal of Experimental Pathology, 63, 671-679.

[26]   Lefaix, J.L., Daburon, F., Martin, M. and Remy, J. (1990) Irradiation gamma et effets tardifs: La fibrose musculaire. fre. (Gamma Irradiation and Delayed Effects: Muscular Fibrosis). Pathologie Biologie, 38, 617-625.

[27]   Fox Jr., J.B., Lakritz, L. and Thayer, D.W. (1993) Effect of Reductant Level in Skeletal Muscle and Liver on the Rate of Loss of Thiamin Due to Gamma-Radiation. International Journal of Radiation Biology, 64, 305-309.
http://dx.doi.org/10.1080/09553009314551451

[28]   Bandstra, E.R., Thompson, R.W., Nelson, G.A., Willey, J.S., Judex, S., Cairns, M.A., et al. (2009) Musculoskeletal Changes in Mice from 20-50 cGy of Simulated Galactic Cosmic Rays. Radiation Research, 172, 21-29.
http://dx.doi.org/10.1667/RR1509.1

[29]   Caiozzo, V.J., Giedzinski, E., Baker, M., Suarez, T., Izadi, A., Lan, M., et al. (2010) The Radiosensitivity of Satellite Cells: Cell Cycle Regulation, Apoptosis and Oxidative Stress. Radiation Research, 174, 582-589.
http://dx.doi.org/10.1667/RR2190.1

[30]   Cho-Lim, J.J., Caiozzo, V.J., Tseng, B.P., Giedzinski, E., Baker, M.J. and Limoli, C.L. (2011) Satellite Cells Say NO to Radiation. Radiation Research, 175, 561-568.
http://dx.doi.org/10.1667/RR2453.1

[31]   Gerstner, H.B., Lewis, R.B. and Richey, E.O. (1953) Early Effects of High Intensity X-Radiation on Skeletal Muscle. The Journal of General Physiology, 37, 445-459.
http://dx.doi.org/10.1085/jgp.37.4.445

[32]   Granata, A.L., Vecchi, C., Graciotti, L., Fulgenzi, G., Maggi, S. and Corsi, A. (1998) Gamma Irradiation Can Reduce Muscle Damage in mdx Dystrophic Mice. Acta Neuropathologica, 96, 564-568.
http://dx.doi.org/10.1007/s004010050936

[33]   Hino, M., Hamada, N., Tajika, Y., Funayama, T., Morimura, Y., Sakashita, T., et al. (2009) Insufficient Membrane Fusion in Dysferlin-Deficient Muscle Fibers after Heavy-Ion Irradiation. Cell Structure and Function, 34, 11-15.
http://dx.doi.org/10.1247/csf.08033

[34]   Olivé, M., Blanco, R., Rivera, R., Cinos, C. and Ferrer, I. (1995) Cell Death Induced by Gamma Irradiation of Developing Skeletal Muscle. Journal of Anatomy, 187, 127-132.

[35]   Wernig, A., Zweyer, M. and Irintchev, A. (2000) Function of Skeletal Muscle Tissue Formed after Myoblast Transplantation into Irradiated Mouse Muscles. The Journal of Physiology, 522, 333-345.
http://dx.doi.org/10.1111/j.1469-7793.2000.t01-2-00333.x

[36]   Jurdana, M., Cemazar, M., Pegan, K. and Mars, T. (2013) Effect of Ionizing Radiation on Human Skeletal Muscle Precursor Cells. Radiology and Oncology, 47, 376-381.
http://dx.doi.org/10.2478/raon-2013-0058

[37]   Rosenblatt, J.D. and Parry, D.J. (1993) Adaptation of Rat Extensor Digitorum Longus Muscle to Gamma Irradiation and Overload. Pflügers Archiv, 423, 255-264.
http://dx.doi.org/10.1007/BF00374404

[38]   Khizhniak, S.V., Voitsitskii, V.M., Ostapchenko, S.G. and Kucherenko, N.E. (1990) Vliianie ioniziruiushchei radiatsii na aktivnost’ Ca2+-ATP-azy sarkoplazmaticheskogo retikuluma skeletnykh myshts krolika. Rus. (The Effect of Ionizing Radiation on Ca2+-ATPase Activity from the Sarcoplasmic Reticulum of Rabbit Skeletal Muscles). Ukrainskii Biokhimicheskii Zhurnal, 62, 58-63.

[39]   Schwenen, M., Altman, K.I. and Schroder, W. (1989) Radiation-Induced Increase in the Release of Amino Acids by Isolated, Perfused Skeletal Muscle. International Journal of Radiation Biology, 55, 257-269.
http://dx.doi.org/10.1080/09553008914550291

[40]   Voitsitskii, V.M., Fedorov, A.N., Lugovskii, E.B., Derzskaia, S.G., Khizhniak, S.V., Kurskii, M.D., et al. (1990) Vliianie ioniziruiushchei radiatsii na strukturu gidrofobnogo fragmenta Ca-ATFazy sarkoplazmaticheskogo retikuluma skeletnykh myshts. rus. (The Effect of Ionizing Radiation on the Structure of the Hydrophobic Fragment of Ca-ATPase in Skeletal Muscle Sarcoplasmic Reticulum). Radiobiologia, 30, 16-19.

[41]   Ahlersova, E., Ahlers, I., Slavkovska, E. and Praslicka, M. (1981) Metabolic Changes after Non-Lethal X-Irradiation of Rats. I. Carbohydrates, Hormones. Folia Biologica, 27, 404-412.

[42]   Khizhniak, S.V., Voitsitskii, V.M. and Kucherenko, N.E. (1991) Strukturnye izmeneniia membran sarkoplazmaticheskogo retikuluma skeletnykh myshts na rannem etape rentgenovskogo oblucheniia. rus. (Structural Changes in the Sarcoplasmic Reticulum Membrane of Skeletal Muscles at the Early Stage of X-Ray Irradiation). Ukrainskii Biokhimicheskii Zhurnal, 63, 113-117.

[43]   Tatsumi, R., Liu, X., Pulido, A., Morales, M., Sakata, T., Dial, S., et al. (2006) Satellite Cell Activation in Stretched Skeletal Muscle and the Role of Nitric Oxide and Hepatocyte Growth Factor. American Journal of Physiology—Cell Physiology, 290, C1487-C1494.
http://dx.doi.org/10.1152/ajpcell.00513.2005

[44]   McDonald, A.A., Kunz, M.D. and McLoon, L.K. (2014) Dystrophic Changes in Extraocular Muscles after Gamma Irradiation in mdx:utrophin(+/-) Mice. PLoS ONE, 9, e86424.
http://dx.doi.org/10.1371/journal.pone.0086424

[45]   Lefaix, J.L., Martin, M., Tricaud, Y. and Daburon, F. (1993) Muscular Fibrosis Induced after Pig Skin Irradiation with Single Doses of 192Ir Gamma-Rays. The British Journal of Radiology, 66, 537-544.
http://dx.doi.org/10.1259/0007-1285-66-786-537

[46]   Ibarrola, D., Francois-Joubert, A., Leviel, J.L., Massarelli, R. and Lefaix, J.L. (1996) In Vivo Study of Rabbit Irradiated Skeletal Muscle by MRI—A Long-Term Follow-Up. The British Journal of Radiology, 69, 1026-1031.
http://dx.doi.org/10.1259/0007-1285-69-827-1026

[47]   Popova, M.F., Buliakova, N.V. and Azarova, V.S. (1988) Tkanevye vzaimodeistviia regeneriruiushchei myshechnoi tkani v usloviiakh deistviia ioniziruiushchei radiatsii. rus. (Tissue Interactions of Regenerating Muscle Tissue with Skeletal Muscle under the Effect of Ionizing Radiation. Archives of Anatomy, Histology and Embryology, 95, 35-40.

[48]   Gulati, A.K. (1987) The Effect of X-Irradiation on Skeletal Muscle Regeneration in the Adult Rat. Journal of the Neurological Sciences, 78, 111-120.
http://dx.doi.org/10.1016/0022-510X(87)90083-9

[49]   Hsu, H.Y., Chai, C.Y. and Lee, M.S. (1998) Radiation-Induced Muscle Damage in Rats after Fractionated High-Dose Irradiation. Radiation Research, 149, 482-486.
http://dx.doi.org/10.2307/3579788

[50]   Andreollo, N.A., Santos, E.F., Araujo, M.R. and Lopes, L.R. (2012) Rat’s Age versus Human’s Age: What Is the Relationship? Arquivos Brasileiros de Cirurgia Digestiva, 25, 49-51.
http://dx.doi.org/10.1590/S0102-67202012000100011

[51]   Quinn, R. (2005) Comparing Rat’s to Human’s Age: How Old Is My Rat in People Years? Nutrition, 21, 775-777.
http://dx.doi.org/10.1016/j.nut.2005.04.002

[52]   van Leeuwen-Segarceanu, E.M., Dorresteijn, L.D., Pillen, S., Biesma, D.H., Vogels, O.J. and van Alfen, N. (2012) Progressive Muscle Atrophy and Weakness after Treatment by Mantle Field Radiotherapy in Hodgkin Lymphoma Survivors. International Journal of Radiation Oncology *Biology* Physics, 82, 612-618.
http://dx.doi.org/10.1016/j.ijrobp.2010.11.064

[53]   Gillette, E.L., Mahler, P.A., Powers, B.E., Gillette, S.M. and Vujaskovic, Z. (1995) Late Radiation Injury to Muscle and Peripheral Nerves. International Journal of Radiation Oncology *Biology* Physics, 31, 1309-1318.
http://dx.doi.org/10.1016/0360-3016(94)00422-H

 
 
Top