Back
 JBiSE  Vol.8 No.8 , August 2015
Flexible Polyimide Microelectrodes Array for Transcorneal Electrical Stimulation
Abstract: The relationship between the parameters of Transcorneal Electrical Stimulation (TES) and its neuro-protective effect of TES on axotomised Retinal Ganglion Cells (RGCs) is still unclear. This work discusses the design strategy of a new non conventional TES stimulator, the micro fabrication processes and characterization of an array of MEMS microelectrodes over a flexible polymer layer substrate to stimulate the human cornea. The micro-array of electrodes, over a flexible smooth biocompatible polyimide substrate, fine tunes the curvature of the cornea. This tool can help researchers to define the optimal electric stimulation parameters required in TES.
Cite this paper: de-Rivera, L. , Pérez-Tovar, F. , Amaya, J. and Carrasco, F. (2015) Flexible Polyimide Microelectrodes Array for Transcorneal Electrical Stimulation. Journal of Biomedical Science and Engineering, 8, 544-554. doi: 10.4236/jbise.2015.88051.
References

[1]   Gelkeler, F., et al. (2006) Phosphenes Electrically Evoked with DTL Electrodes: A Study in patients with Retinitis Pigmentosa, Glaucoma, and Homonymous Visual Field Loss and Normal Subjects. Investigative Ophthalmology & Visual Science, 47, 4966-4974.
http://dx.doi.org/10.1167/iovs.06-0459

[2]   Schatz, A., et al. (2011) Transcorneal Electrical Stimulation for Patients with Retinitis Pigmentosa: “A Prospective, Randomized, Sham-Controlled Exploratory Study”. Investigative Ophthalmology & Visual Science, 52.

[3]   Naycheva, L., et al. (2013) Transcorneal Electrical Stimulation in Patients with Retinal Artery Occlusion: A Prospective, Randomized, Sham-Controlled Pilot Study. OphthalmolTher, 2, 25-39.
http://dx.doi.org/10.1007/s40123-013-0012-5

[4]   Robles-Camarillo, D., et al. (2013) The Effect of Transcorneal Electrical Stimulation in Visual Acuity: Retinitis Pigmentosa. J. Biomedical Science and Engineering, 6, 1-7.
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=37958

[5]   Naycheva, L., et al. (2013) Transcorneal Electrical Stimulation in Patients with Retinal Artery Occlusion: A Prospective, Randomized, Sham-Controlled Pilot Study. Ophthalmology and Therapy, 2, 25-39.
http://dx.doi.org/10.1007/s40123-013-0012-5

[6]   Morimoto, T., et al. (2010) Optimal Parameters of Trancorneal Electrical Stimulation (TES) to Be Neuroprotective of Axotomized RGCs in Adult Rats. Experimental Aye Research, 90, 285-291.

[7]   Xie, et al. (2011) Modeling and Percept of Transcorneal Electrical Stimulation in Humans. IEEE Transactions on Biomedical Engineering, 58, 1932-1939.
http://dx.doi.org/10.1109/TBME.2010.2087378

[8]   Miramoto, T., et al. (2005) Transcorneal Electrical Stimulation Rescues Axotomized Retinal Ganglion Cells by Activating Endogenous Retinal IGF-1 System. Investigative Ophthalmology & Visual Science, 46, 2147-2155.

[9]   Freeman, D.K., et al. (2010) Selective Activation of Neuronal Targets With Sinusoidal Electric Stimulation. Journal of Neurophysiology, 104, 2778-2791.
http://dx.doi.org/10.1152/jn.00551.2010

[10]   Sahin, M. and Tie, Y.M. (2007) Non-Rectangular Waveforms for Neural Stimulation with Practical Electrodes. Journal of Neural Engineering, 4, 227-233.
http://dx.doi.org/10.1088/1741-2560/4/3/008

[11]   Lee, S.W., Eddington, D.K. and Fried, S.I. (2013) Responses to Pulsatile Subretinal Electric Stimulation: Effects of Amplitude and Duration. Journal of Neurophysiology, 109, 1954-1968.
http://dx.doi.org/10.1152/jn.00293.2012

[12]   Kamiyama, Y., Wu, S.M. and Usui, S. (2009) Simulation Analysis of Bandpass Filtering Properties of a Rod Photoreceptor Network. Vision Research, 49, 970-978.
http://dx.doi.org/10.1016/j.visres.2009.03.003

[13]   Freeman, D.K., Rizzo, J.F. and Fried, S.I. (2011) Encoding Visual Information in Retinal Ganglion Cells with Prosthetic Stimulation. Journal of Neural Engineering, 8, Article ID: 035005.
http://dx.doi.org/10.1088/1741-2560/8/3/035005

[14]   Reich, L., Maidenbaum, S. and Amedi, A. (2012) The Brain as a Flexible Task Machine: Implications for Visual Rehabilitation Using Noninvasive vs. Invasive Approaches. Current Opinion in Neurology, 25, 86-95.
http://dx.doi.org/10.1097/wco.0b013e32834ed723

[15]   Gerding, H. (2007) A New Approach towards a Minimal Invasive Retina Implant. Journal of Neural Engineering, 4, S30-S37.
http://dx.doi.org/10.1088/1741-2560/4/1/s05

[16]   Park, R.I. (2014) The Bionic Eye. TheScientist.
http://www.the-scientist.com/?articles.view/articleNo/41052/title/The-Bionic-Eye/

[17]   Sekirnjak, C., Hulse, C., Jepson, L.H., Hottowy, P., Sher, A., Dabrowski, W., et al. (2009) Loss of Responses to Visual but Not Electrical Stimulation in Ganglion Cells of Rats with Severe Photoreceptor Degeneration. Journal of Neurophysiology, 102, 3260-3269.
http://dx.doi.org/10.1152/jn.00663.2009

[18]   Xie, J., Wang, G.-J., Yow, L., Cela, C.J., Humayun, M.S., Weiland, J.D., et al. (2011) Modeling and Percept of Transcorneal Electrical Stimulation in Humans. IEEE Transactions on Biomedical Engineering, 58, 1932-1939.
http://dx.doi.org/10.1109/TBME.2010.2087378

[19]   Cheung, K.C., Renaud, P., Tanila, H. and Djupsund, K. (2007) Flexible Polyimide Microelectrode Array for in Vivo Recordings and Current Source Density Analysis. Biosensors and Bioelectronics, 22, 1783-1790.
http://dx.doi.org/10.1016/j.bios.2006.08.035

[20]   Singh, P.S. (2011) Techniques for Characterization of Polyamide Thin Film Composite Membranes.

[21]   Chiang, T.H. (2008) Preparation, Microstructure, and Property Characterizations of Fluorinated Polyimide-Organosilicate Hybrids.

[22]   IynnDunson, D. (2000) Synthesis and Characterization of Thermosetting Polyimide Oligomers for Microelectronics Packaging.

[23]   Ho, H., Saeedi, E., Kim, S.S., Shen, T. and Parviz, B.A. (2008) Contact Lens with Integrated Inorganic Semiconductor Devices. Proceedings of 21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Tucson, 13-17 January 2008, 403-406.
http://dx.doi.org/10.1109/memsys.2008.4443678

[24]   Seo, J.-M., Kim, S.J., Chung, H., Kim, E.T., Yu, H.G. and Yu, Y.S. (2004) Biocompatibility of Polyimide Microelectrode Array for Retinal Stimulation. Materials Science and Engineering: C, 24, 185-189.
http://dx.doi.org/10.1016/j.msec.2003.09.019

[25]   Zelmat, S. (2006) Etude des proprieties électriques d’un matériau polyimide à haute température: Application à la passivation des composants de puissance en carbure de silicium.

[26]   Doering, R. (2008) Handbook of Semiconductor Manufacturing Technology. 2nd Edition.

[27]   Chena, Y.-Y. (2009) Design and Fabrication of a Polyimide-Based Microelectrode Array: Application in Neural Recording and Repeatable Electrolytic Lesion in Rat Brain.

[28]   Metz, S. (2005) Partial Release and Detachment of Microfabricated Metal and Polymer Structures by Anodic Metal Dissolution.

[29]   HD MicroSystems Technical Service Representative. PI-2600 Series—Low Stress Applications. 2009.

[30]   Kaptein, J.G. (2008) Inductively Powered Implant for Monitoring and Application of Telemetric Metronomic Photodynamic Therapy.

[31]   Olver, K.A. (2009) A New Procedure for the Application and Curing of Polyimide Film on Gold Coated Silicon Wafers.

 
 
Top