JBiSE  Vol.8 No.8 , August 2015
Flexible Polyimide Microelectrodes Array for Transcorneal Electrical Stimulation
ABSTRACT
The relationship between the parameters of Transcorneal Electrical Stimulation (TES) and its neuro-protective effect of TES on axotomised Retinal Ganglion Cells (RGCs) is still unclear. This work discusses the design strategy of a new non conventional TES stimulator, the micro fabrication processes and characterization of an array of MEMS microelectrodes over a flexible polymer layer substrate to stimulate the human cornea. The micro-array of electrodes, over a flexible smooth biocompatible polyimide substrate, fine tunes the curvature of the cornea. This tool can help researchers to define the optimal electric stimulation parameters required in TES.

Cite this paper
de-Rivera, L. , Pérez-Tovar, F. , Amaya, J. and Carrasco, F. (2015) Flexible Polyimide Microelectrodes Array for Transcorneal Electrical Stimulation. Journal of Biomedical Science and Engineering, 8, 544-554. doi: 10.4236/jbise.2015.88051.
References
[1]   Gelkeler, F., et al. (2006) Phosphenes Electrically Evoked with DTL Electrodes: A Study in patients with Retinitis Pigmentosa, Glaucoma, and Homonymous Visual Field Loss and Normal Subjects. Investigative Ophthalmology & Visual Science, 47, 4966-4974.
http://dx.doi.org/10.1167/iovs.06-0459

[2]   Schatz, A., et al. (2011) Transcorneal Electrical Stimulation for Patients with Retinitis Pigmentosa: “A Prospective, Randomized, Sham-Controlled Exploratory Study”. Investigative Ophthalmology & Visual Science, 52.

[3]   Naycheva, L., et al. (2013) Transcorneal Electrical Stimulation in Patients with Retinal Artery Occlusion: A Prospective, Randomized, Sham-Controlled Pilot Study. OphthalmolTher, 2, 25-39.
http://dx.doi.org/10.1007/s40123-013-0012-5

[4]   Robles-Camarillo, D., et al. (2013) The Effect of Transcorneal Electrical Stimulation in Visual Acuity: Retinitis Pigmentosa. J. Biomedical Science and Engineering, 6, 1-7.
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=37958

[5]   Naycheva, L., et al. (2013) Transcorneal Electrical Stimulation in Patients with Retinal Artery Occlusion: A Prospective, Randomized, Sham-Controlled Pilot Study. Ophthalmology and Therapy, 2, 25-39.
http://dx.doi.org/10.1007/s40123-013-0012-5

[6]   Morimoto, T., et al. (2010) Optimal Parameters of Trancorneal Electrical Stimulation (TES) to Be Neuroprotective of Axotomized RGCs in Adult Rats. Experimental Aye Research, 90, 285-291.

[7]   Xie, et al. (2011) Modeling and Percept of Transcorneal Electrical Stimulation in Humans. IEEE Transactions on Biomedical Engineering, 58, 1932-1939.
http://dx.doi.org/10.1109/TBME.2010.2087378

[8]   Miramoto, T., et al. (2005) Transcorneal Electrical Stimulation Rescues Axotomized Retinal Ganglion Cells by Activating Endogenous Retinal IGF-1 System. Investigative Ophthalmology & Visual Science, 46, 2147-2155.

[9]   Freeman, D.K., et al. (2010) Selective Activation of Neuronal Targets With Sinusoidal Electric Stimulation. Journal of Neurophysiology, 104, 2778-2791.
http://dx.doi.org/10.1152/jn.00551.2010

[10]   Sahin, M. and Tie, Y.M. (2007) Non-Rectangular Waveforms for Neural Stimulation with Practical Electrodes. Journal of Neural Engineering, 4, 227-233.
http://dx.doi.org/10.1088/1741-2560/4/3/008

[11]   Lee, S.W., Eddington, D.K. and Fried, S.I. (2013) Responses to Pulsatile Subretinal Electric Stimulation: Effects of Amplitude and Duration. Journal of Neurophysiology, 109, 1954-1968.
http://dx.doi.org/10.1152/jn.00293.2012

[12]   Kamiyama, Y., Wu, S.M. and Usui, S. (2009) Simulation Analysis of Bandpass Filtering Properties of a Rod Photoreceptor Network. Vision Research, 49, 970-978.
http://dx.doi.org/10.1016/j.visres.2009.03.003

[13]   Freeman, D.K., Rizzo, J.F. and Fried, S.I. (2011) Encoding Visual Information in Retinal Ganglion Cells with Prosthetic Stimulation. Journal of Neural Engineering, 8, Article ID: 035005.
http://dx.doi.org/10.1088/1741-2560/8/3/035005

[14]   Reich, L., Maidenbaum, S. and Amedi, A. (2012) The Brain as a Flexible Task Machine: Implications for Visual Rehabilitation Using Noninvasive vs. Invasive Approaches. Current Opinion in Neurology, 25, 86-95.
http://dx.doi.org/10.1097/wco.0b013e32834ed723

[15]   Gerding, H. (2007) A New Approach towards a Minimal Invasive Retina Implant. Journal of Neural Engineering, 4, S30-S37.
http://dx.doi.org/10.1088/1741-2560/4/1/s05

[16]   Park, R.I. (2014) The Bionic Eye. TheScientist.
http://www.the-scientist.com/?articles.view/articleNo/41052/title/The-Bionic-Eye/

[17]   Sekirnjak, C., Hulse, C., Jepson, L.H., Hottowy, P., Sher, A., Dabrowski, W., et al. (2009) Loss of Responses to Visual but Not Electrical Stimulation in Ganglion Cells of Rats with Severe Photoreceptor Degeneration. Journal of Neurophysiology, 102, 3260-3269.
http://dx.doi.org/10.1152/jn.00663.2009

[18]   Xie, J., Wang, G.-J., Yow, L., Cela, C.J., Humayun, M.S., Weiland, J.D., et al. (2011) Modeling and Percept of Transcorneal Electrical Stimulation in Humans. IEEE Transactions on Biomedical Engineering, 58, 1932-1939.
http://dx.doi.org/10.1109/TBME.2010.2087378

[19]   Cheung, K.C., Renaud, P., Tanila, H. and Djupsund, K. (2007) Flexible Polyimide Microelectrode Array for in Vivo Recordings and Current Source Density Analysis. Biosensors and Bioelectronics, 22, 1783-1790.
http://dx.doi.org/10.1016/j.bios.2006.08.035

[20]   Singh, P.S. (2011) Techniques for Characterization of Polyamide Thin Film Composite Membranes.

[21]   Chiang, T.H. (2008) Preparation, Microstructure, and Property Characterizations of Fluorinated Polyimide-Organosilicate Hybrids.

[22]   IynnDunson, D. (2000) Synthesis and Characterization of Thermosetting Polyimide Oligomers for Microelectronics Packaging.

[23]   Ho, H., Saeedi, E., Kim, S.S., Shen, T. and Parviz, B.A. (2008) Contact Lens with Integrated Inorganic Semiconductor Devices. Proceedings of 21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Tucson, 13-17 January 2008, 403-406.
http://dx.doi.org/10.1109/memsys.2008.4443678

[24]   Seo, J.-M., Kim, S.J., Chung, H., Kim, E.T., Yu, H.G. and Yu, Y.S. (2004) Biocompatibility of Polyimide Microelectrode Array for Retinal Stimulation. Materials Science and Engineering: C, 24, 185-189.
http://dx.doi.org/10.1016/j.msec.2003.09.019

[25]   Zelmat, S. (2006) Etude des proprieties électriques d’un matériau polyimide à haute température: Application à la passivation des composants de puissance en carbure de silicium.

[26]   Doering, R. (2008) Handbook of Semiconductor Manufacturing Technology. 2nd Edition.

[27]   Chena, Y.-Y. (2009) Design and Fabrication of a Polyimide-Based Microelectrode Array: Application in Neural Recording and Repeatable Electrolytic Lesion in Rat Brain.

[28]   Metz, S. (2005) Partial Release and Detachment of Microfabricated Metal and Polymer Structures by Anodic Metal Dissolution.

[29]   HD MicroSystems Technical Service Representative. PI-2600 Series—Low Stress Applications. 2009.

[30]   Kaptein, J.G. (2008) Inductively Powered Implant for Monitoring and Application of Telemetric Metronomic Photodynamic Therapy.

[31]   Olver, K.A. (2009) A New Procedure for the Application and Curing of Polyimide Film on Gold Coated Silicon Wafers.

 
 
Top