[1] Edgell, S. and Noon, S. (1984) Effect of Violation of Normality on the t Test of the Correlation Coefficient. Psychological Bulletin, 95, 576-583.
http://dx.doi.org/10.1037/0033-2909.95.3.576
[2] Hayes, A.F. (1996) PERMUSTAT: Randomization Tests for the MacIntosh. Behavior Research Methods, Instruments, & Computers, 28, 473-475.
http://dx.doi.org/10.3758/BF03200530
[3] Bonett, D.G. and Wright, T.A. (2000) Sample Size Requirements for Estimating Pearson, Kendall and Spearman Correlations. Psychometrics, 65, 23-28.
http://dx.doi.org/10.1007/BF02294183
[4] Zimmerman, D.W., Zumbo, B.D. and Williams, R.H. (2003) Bias in Estimation and Hypothesis Testing of Correlation. Psychologica, 24, 133-158.
[5] Wilcox, R.R. (2001) Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy. Springer, New York.
http://dx.doi.org/10.1007/978-1-4757-3522-2
[6] Warner, R. (2008) Applied Statistics: From Bivariate through Multivariate Techniques. Sage Publications, Inc., Thousand Oaks.
[7] Triola, M. (2010) Elementary Statistics. 11th Edition, Addison-Wesley/Pearson Education, Boston.
[8] Witte, R. and Witte, J. (2010) Statistics. 9th Edition, Wiley, New York.
[9] Blair, R. and Lawson, S. (1982) Another Look at the Robustness of the Product-Moment Correlation Coefficient to Population Non-Normality. Florida Journal of Educational Research, 24, 11-15.
[10] Fowler, R. (1987) Power and Robustness in Product-Moment Correlation. Applied Psychological Measurement, 11, 419-428.
http://dx.doi.org/10.1177/014662168701100407
[11] Zimmerman, D. and Zumbo, B. (1993) Significance Testing of Correlation Using Scores, Ranks, and Modified Ranks. Educational and Psychological Measurement, 53, 897-904.
http://dx.doi.org/10.1177/0013164493053004003
[12] Bishara, A.J. and Hittner, J.B. (2012) Testing the Significance of a Correlation with Non-Normal Data: Comparison of Pearson, Spearman, Transformation, and Resampling Approaches. Psychological Methods, 17, 399-417.
[13] Osborne, J. (2002) Notes on the Use of Data Transformations. Practical Assessment, Research & Evaluation, 8.
http://pareonline.net/getvn.asp?v=8&n=6
[14] Tabachnick, B. and Fidell, L. (2007) Using Multivariate Statistics. 5th Edition, Allyn & Bacon/Pearson Education, Boston.
[15] Rasmussen, J. (1989) Data Transformation, Type I Error Rate and Power. British Journal of Mathematical and Statistical Psychology, 42, 203-213.
http://dx.doi.org/10.1111/j.2044-8317.1989.tb00910.x
[16] Dunlap, W., Burke, M. and Greer, T. (1995) The Effect of Skew on the Magnitude of Product-Moment Correlations. Journal of General Psychology, 122, 365-377.
http://dx.doi.org/10.1080/00221309.1995.9921248
[17] Calkins, D.S. (1974) Some Effects of Non-Normal Distribution Shape on the Magnitude of the Pearson Product Moment Correlation Coefficient. Interamerican Journal of Psychology, 8, 261-288.
[18] Wilcox, R.R. (1993) Some Results on a Winsorized Correlation Coefficient. British Journal of Mathematical and Statistical Psychology, 46, 339-349.
http://dx.doi.org/10.1111/j.2044-8317.1993.tb01020.x
[19] Good, P. (2009) Robustness of Pearson Correlation. Interstat, 15, 1-6.
[20] Kotz, S., Balakrishnan, N. and Johnson, N.L. (2000) Continuous Multivariate Distributions: Volume 1: Models and Applications. 2nd Edition, John Wiley & Sons, Inc., New York.
http://dx.doi.org/10.1002/0471722065
[21] Ruscio, J. and Kaczetow, W. (2008) Simulating Multivariate Non-Normal Data Using an Iterative Algorithm. Multivariate Behavioral Research, 43, 335-381.
http://dx.doi.org/10.1080/00273170802285693
[22] Balakrishnan, N. and Lai, C.D. (2009) Continuous Bivariate Distributions. 2nd Edition, Springer, New York.
[23] Chok, N.S. (2010) Pearson’s versus Spearman’s and Kendall’s Correlation Coefficients for Continuous Data. Master’s Thesis, University of Pittsburgh, Pittsburgh.
[24] Sheskin, D.J. (2007) Handbook of Parametric and Nonparametric Statistical Procedures. 4th Edition, Chapman & Hall/CRC, Boca Raton.
[25] Tanizaki, H. (2004) On Small Sample Properties of Permutation Tests: Independence between Two Samples. International Journal of Pure and Applied Mathematics, 13, 235-243.
[26] Ernst, M.D. (2004) Permutation Methods: A Basis for Exact Inference. Statistical Science, 19, 676-685.
http://dx.doi.org/10.1214/088342304000000396
[27] Knight, W. (1966) A Computer Method for Calculating Kendall’s Tau with Ungrouped Data. Journal of the American Statistical Association, 61, 436-439.
http://dx.doi.org/10.1080/01621459.1966.10480879
[28] Kowalski, C.J. and Tarter, M.E. (1969) Co-Ordinate Transformations to Normality and the Power of Normal Tests for Independence. Biometrika, 56, 139-148.
http://dx.doi.org/10.1093/biomet/56.1.139
[29] Rasmussen, J. and Dunlap, W. (1991) Dealing with Non-Normal Data: Parametric Analysis of Transformed Data vs. Nonparametric Analysis. Educational and Psychological Measurement, 51, 809-820.
http://dx.doi.org/10.1177/001316449105100402
[30] Siegel, S. (1957) Nonparametric Statistics. The American Statistician, 11, 13-19.
[31] Lieberson, S. (1964) Limitations in the Application of Non-Parametric Coefficients of Correlation. American Socio-logical Review, 29, 744-746.
http://dx.doi.org/10.2307/2091428
[32] Khamis, H. (2008) Measures of Association: How to Choose? Journal of Diagnostic Medical Sonography, 24, 155-162.
http://dx.doi.org/10.1177/8756479308317006
[33] Good, P. (2005) Permutation, Parametric and Bootstrap Tests of Hypotheses. 3rd Edition, Springer-Verlag, New York.
[34] Mielke, P.W. and Berry, K.J. (2007) Permutation Methods. A Distance Function Approach. 2nd Edition, Springer, New York.
[35] Keller-McNulty, S. and Higgins, J.J. (1987) Effect of Tail Weight and Outliers on Power and Type-I Error of Robust Permutation Tests for Location. Communications in Statistics B-Simulation and Computation, 16, 17-35.
http://dx.doi.org/10.1080/03610918708812575
[36] Akkartal, E., Mendes, M. and Mendes, E. (2010) Determination of Suitable Permutation Numbers in Comparing Independent Group Means: A Monte Carlo Simulation Study. Journal of Scientific & Industrial Research, 69, 422-425.
[37] Hayes, A.F. (1998) SPSS Procedures for Approximate Randomization Tests. Behavior Research Methods, Instruments, & Computers, 30, 536-543.
http://dx.doi.org/10.3758/BF03200687
[38] Hayes, A.F. (2000) Randomization Tests and the Equality of Variance Assumption When Comparing Group Means. Animal Behaviour, 59, 653-656.
http://dx.doi.org/10.1006/anbe.1999.1366