Back
 AJCM  Vol.5 No.3 , September 2015
Power Grounding Optimization
Abstract: In this paper we discuss the finite element models (FEM) using electromagnetic theory—Maxwell’s equations. Next we developed a new procedure for optimization with the idea to be implemented in the standard IEEE-80 (2013). We expose those ideas in the paper. ETAP program and Matlab software are used for FEM.
Cite this paper: Cano-Plata, E. , Soto-Marín, O. , Jiménez-Lozano, G. and Estrada-Estrada, J. (2015) Power Grounding Optimization. American Journal of Computational Mathematics, 5, 243-252. doi: 10.4236/ajcm.2015.53021.
References

[1]   ANSI/IEEE Standard 80-2013 Guide for Safety in AC Substations Grounding.

[2]   Practical Applications of ANSI/IEEE Standard 80-1986—IEEE Guide for Safety. Garret, D.L Org., 86 EhO253-S-PWR.

[3]   Casas Ospina, F. (2010) Grounding—Safety in Power Systems (Spanish). INCONTEC, 187p,

[4]   Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005) The Finite Element Method. 6th Edition, Elsevier, Barcelona.

[5]   Reddy, J.N. (2005) An Introduction to the Finite Element Method. McGraw-Hill, New York.

[6]   Cano Plata, E.A. and Ramirez Casta?o, J.S. (2010) Systems Grid Ground: Design with IEEE-80 and Evaluated with FEM (Spanish). National University of Colombia, Manizales.

[7]   Simo, J.C. (1988) A Framework for Finite Strain Elasto-Plasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition, Part I: Continuum Formulation. Computer Methods in Applied Mechanics and Engineering, 66, 199-219.
http://dx.doi.org/10.1016/0045-7825(88)90076-X

[8]   Simo, J.C. (1988) A Framework for Finite Strain Elasto-Plasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition, Part II: Computational Aspects. Computer Methods in Applied Mechanics and Engineering, 68, 199-219.
http://dx.doi.org/10.1016/0045-7825(88)90076-X

[9]   Simo, J.C. and Marsden, J.E. (1984) On the Rotated Stress Tensor and the Material Version of the Doyle-Ericksen Formula. Archive for Rational Mechanics and Analysis, 86, 213-231.
http://dx.doi.org/10.1007/BF00281556

[10]   Michiel, H. (2001) Differentiable Manifold. Encyclopedia of Mathematics. Springer, Berlin.

[11]   Monk, P. (2003) Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford, 450.

[12]   Anand, L. (1979) On Hencky’s Approximate Strain-Energy Function for Moderate Deformation. Journal of Applied Mechanics, 46, 78-82.
http://dx.doi.org/10.1115/1.3424532

[13]   Rolph III, W.D. and Bathe, K.J. (1984) On a Large Strain Finite Element Formulation for Elasto-Plastic Analysis. In: William, K.J., Ed., Constitutive Equations: Macro and Computational Aspects, Winter Annual Meeting, ASME, New York, 131-147.

[14]   Weber, G. and Anand, L. (1990) Finite Deformation Constitutive Equation and a Time Integration Procedure for Isotropic, Hyperelastic-Viscoplastic Solids. Computer Methods in Applied Mechanics and Engineering, 79, 173-202. (1990).
http://dx.doi.org/10.1016/0045-7825(90)90131-5

[15]   Eterovic, A.L. and Bathe, K.J. (1990) A Hyperelastic Based Large Strain Elasto-Plastic Constitutive Formulation with Combined Isotropic Kinematic Hardening Using the Logarithmic Stress and Strain Measures. International Journal for Numerical Methods in Engineering, 30, 1099-1114.
http://dx.doi.org/10.1002/nme.1620300602

[16]   Dvorki, E. and Goldschmit, M. (2002) Finite Element Method, Graduate Course. Universidad de Buenos Aires, Buenos Aires.

[17]   Matlab Partial Differential Equation (PDE) Toolbox, MATLAB 7.0, 2008.

[18]   ETAP 114C Power System Engineering, Operation Software Technology, 2014—Grounding Module.

[19]   Soto Marin, O.J. (2015) Failure Analysis of Distribution Transformers in the East Zone of Caldas. National University of Colombia, Manizales.

[20]   Bellman, R.E. (1957) Dynamic Programming. Princeton University Press, Princeton.

 
 
Top