[1] Hougard, J.-M., Duchon, S., Zaim, M. and Guillet, P. (2002) Bifenthrin: A Useful Pyrethroid Insecticide for Treatment of Mosquito Nets. Journal of Medical Entomology, 39, 526-533.
http://dx.doi.org/10.1603/0022-2585-39.3.526
[2] Amweg, E.L., Weston, D.P. and Ureda, N.M. (2005) Use and Toxicity of Pyrethroid Pesticides in the Central Valley, California, USA. Environmental Toxicology and Chemistry, 24, 966-972.
http://dx.doi.org/10.1897/04-146R1.1
[3] O’Brien, D.J., Morgan, J.P., Lane, M.F., O’Reilly, P.F. and O’Neill, S.J. (1997) A Novel Dip Formulation of a Synthetic Pyrethroid (SP) for the Control of Blowfly Myiasis of Sheep. Veterinary Parasitology, 69, 145-150.
http://dx.doi.org/10.1016/S0304-4017(96)01103-X
[4] Feo, M.L., Eljarrat, E., Manaca, M.N., Dobaño, C., Barcelo, D., Sunyer, J., Alonso, P.L., Menendez, C. and Grimalt, J.O. (2012) Pyrethroid Use-Malaria Control and Individual Applications by Households for Other Pests and Home Garden Use. Environment international, 38, 67-72.
http://dx.doi.org/10.1016/j.envint.2011.08.008
[5] Zerba, E. (1988) Insecticidal Activity of Pyrethroids on Insects of Medical Importance. Parasitology Today, 4, S3-S7.
http://dx.doi.org/10.1016/0169-4758(88)90079-8
[6] Weston, D., Holmes R., You, J. and Lydy, M. (2005) Aquatic Toxicity Due to Residential Use of Pyrethroid Insecticides. Environmental Science & Technology, 39, 9778-9784.
http://dx.doi.org/10.1021/es0506354
[7] Corcellas, C., Feo, M.L., Torres, J.P., Malm, O., Ocampo-Duque, W., Eljarrat, E. and Barceló, D. (2012) Pyrethroids in Human Breast Milk: Occurrence and Nursing Daily Intake Estimation. Environment International, 47, 17-22.
http://dx.doi.org/10.1016/j.envint.2012.05.007
[8] Chaudhry, Q., Blom-Zandstra, M., Gupta, S.K. and Joner, E. (2005) Utilising the Synergy between Plants and Rhizosphere Microorganisms to Enhance Breakdown of Organic Pollutants in the Environment (15 pp). Environmental Science and Pollution Research, 12, 34-48.
http://dx.doi.org/10.1065/espr2004.08.213
[9] Shann, J.R. (1995) The Role of Plants and Plant/Microbial Systems in the Reduction of Exposure. Environmental Health Perspectives, 103, 13-15.
http://dx.doi.org/10.2307/3432470
[10] Juhnke, M.E., Mathre, D. and Sands, D. (1987) Identification and Characterization of Rhizosphere-Competent Bacteria of Wheat. Applied and Environmental Microbiology, 53, 2793-2799.
[11] Kullman, S.W. and Matsumura, F. (1996) Metabolic Pathways Utilized by Phanerochaete chrysosporium for Degradation of the Cyclodiene Pesticide Endosulfan. Applied and Environmental Microbiology, 62, 593-600.
[12] Widada, J., Nojiri, H. and Omori, T. (2002) Recent Developments in Molecular Techniques for Identification and Monitoring of Xenobiotic-Degrading Bacteria and Their Catabolic Genes in Bioremediation. Applied Microbiology and Biotechnology, 60, 45-59.
[13] Oi, M. (1999) Time-Dependent Sorption of Imidacloprid in Two Different Soils. Journal of Agricultural and Food Chemistry, 47, 327-332.
http://dx.doi.org/10.1021/jf980658k
[14] El-Fantroussi, S. (2000) Enrichment and Molecular Characterization of a Bacterial Culture That Degrades Methoxy-Methyl Urea Herbicides and Their Aniline Derivatives. Applied and Environmental Microbiology, 66, 5110-5115.
http://dx.doi.org/10.1128/AEM.66.12.5110-5115.2000
[15] Grant, R. and Betts, W. (2004) Mineral and Carbon Usage of Two Synthetic Pyrethroid Degrading Bacterial Isolates. Journal of Applied Microbiology, 97, 656-662.
http://dx.doi.org/10.1111/j.1365-2672.2004.02358.x
[16] Siddique, T., Okeke, B.C., Arshad, M. and Frankenberger, W.T. (2003) Enrichment and Isolation of Endosulfan-Degrading Microorganisms. Journal of Environmental Quality, 32, 47-54.
http://dx.doi.org/10.2134/jeq2003.4700
[17] Kumar, K., Devi, S.S., Krishnamurthi, K., Kanade, G.S. and Chakrabarti, T. (2007) Enrichment and Isolation of Endosulfan Degrading and Detoxifying Bacteria. Chemosphere, 68, 317-322.
http://dx.doi.org/10.1016/j.chemosphere.2006.12.076
[18] Gerhardt, G., Murray, R., Wood, W. and Kreig, N. (2005) Methods for General and Molecular Bacteriology. American Society for Microbiology, 1325 Massachusetts Ave, NW, Washington DC.
[19] Wong, J., Xiang, L., Gu, X. and Zhou, L. (2004) Bioleaching of Heavy Metals from Anaerobically Digested Sewage Sludge Using FeS2 as an Energy Source. Chemosphere, 55, 101-107.
http://dx.doi.org/10.1016/j.chemosphere.2003.11.022
[20] Murugesan, A., Jeyasanthi, T. and Maheswari, S. (2010) Isolation and Characterization of Cypermethrin Utilizing Bacteria from Brinjal Cultivated Soil. African Journal of Microbiology Research, 4, 010-013.
[21] Maloney, S., Maule, A. and Smith, A.R. (1993) Purification and Preliminary Characterization of Permethrinase from a Pyrethroid-Transforming Strain of Bacillus cereus. Applied and Environmental Microbiology, 59, 2007-2013.
[22] Grant, R., Daniell, T. and Betts, W. (2002) Isolation and Identification of Synthetic Pyrethroid-Degrading Bacteria. Journal of Applied Microbiology, 92, 534-540.
http://dx.doi.org/10.1046/j.1365-2672.2002.01558.x
[23] Zhang, C., Wang, S. and Yan, Y. (2011) Isomerization and Biodegradation of Beta-Cypermethrin by Pseudomonas aeruginosa CH7 with Biosurfactant Production. Bioresource Technology, 102, 7139-7146.
http://dx.doi.org/10.1016/j.biortech.2011.03.086
[24] Chen, Z.-M. and Wang, Y.-H. (1996) Chromatographic Methods for the Determination of Pyrethrin and Pyrethroid Pesticide Residues in Crops, Foods and Environmental Samples. Journal of Chromatography A, 754, 367-395.
http://dx.doi.org/10.1016/S0021-9673(96)00490-6
[25] Oyetibo, G.O., Ilori, M.O., Adebusoye, S.A., Obayori, O.S. and Amund, O.O. (2010) Bacteria with Dual Resistance to Elevated Concentrations of Heavy Metals and Antibiotics in Nigerian Contaminated Systems. Environmental Monitoring and Assessment, 168, 305-314.
http://dx.doi.org/10.1007/s10661-009-1114-3
[26] Cycoń, M., Wójcik, M. and Piotrowska-Seget, Z. (2009) Biodegradation of the Organophosphorus Insecticide Diazinon by Serratia sp. and Pseudomonas sp. and Their Use in Bioremediation of Contaminated Soil. Chemosphere, 76, 494-501.
http://dx.doi.org/10.1016/j.chemosphere.2009.03.023
[27] Singh, B.K., Walker, A. and Wright, D.J. (2006) Bioremedial Potential of Fenamiphos and Chlorpyrifos Degrading Isolates: Influence of Different Environmental Conditions. Soil Biology and Biochemistry, 38, 2682-2693.
http://dx.doi.org/10.1016/j.soilbio.2006.04.019
[28] Anwar, S., Liaquat, F., Khan, Q.M., Khalid, Z.M. and Iqbal, S. (2009) Biodegradation of Chlorpyrifos and Its Hydrolysis Product 3,5,6-Trichloro-2-Pyridinol by Bacillus pumilus Strain C2A1. Journal of Hazardous Materials, 168, 400-405.
http://dx.doi.org/10.1016/j.jhazmat.2009.02.059
[29] Awasthi, N., Manickam, N. and Kumar, A. (1997) Biodegradation of Endosulfan by a Bacterial Coculture. Bulletin of Environmental Contamination and Toxicology, 59, 928-934.
http://dx.doi.org/10.1007/s001289900571
[30] Sutherland, T.D., Horne, I., Lacey, M.J., Harcourt, R.L., Russell, R.J. and Oakeshott, J.G. (2000) Enrichment of an Endosulfan-Degrading Mixed Bacterial Culture. Applied and Environmental Microbiology, 66, 2822-2828.
http://dx.doi.org/10.1128/AEM.66.7.2822-2828.2000