AiM  Vol.5 No.9 , August 2015
MALDI-TOF MS Assessment to Identify Environmental Mycobacteria
Abstract: Over the past few decades, there has been a significant increase in the number of mycobacterial species described. Currently, the genus Mycobacterium consists of 170 species. Most species are called nontuberculous mycobacteria (NTM) and are potentially or rarely pathogenic and ubiquitous. One of the main challenges in mycobacteriology is the rapid and precise identification of these microorganisms. In this work, we compared two protein extraction protocols for the identification of 38 reference strains and clinical isolates, representing 27 species, by mass spectrometry (MALDI-TOF MS) to subsequently use the best method for identifying environmental mycobacteria. The results obtained with reference strains and clinical isolates showed that protocol A was effective in identifying 92.1% of mycobacterial specimens at the species level and protocol B, 50%. Therefore, protocol A was evaluated for the rapid identification of 27 environmental mycobacterial isolates. These isolates were subjected to PCR-restriction enzyme analysis (PRA-hsp65). Two isolates were misidentified by PRA-hsp65, whereas MALDI-TOF MS was able to identify them correctly. The results were confirmed by hsp65 and 16S rRNA gene sequencing. Mass spectrometry has the advantage of being a simpler and faster technique than PRA-hsp65, and our results showed that MALDI-TOF MS is a valuable tool for the identification of environmental mycobacterial isolates.
Cite this paper: Paula Uzam, C. , Brianesi, U. , Romagnoli, C. , Gomes, K. , Duarte, R. , Chimara, E. , Oliveira, J. , Vallim, M. , Pascon, R. and Viana-Niero, C. (2015) MALDI-TOF MS Assessment to Identify Environmental Mycobacteria. Advances in Microbiology, 5, 620-629. doi: 10.4236/aim.2015.59065.

[1]   Le Dantec, C., Duguet, J.P., Montiel, A., Dumoutier, N., Dubrou, S. and Vincent, V. (2002) Occurrence of Mycobacteria in Water Treatment Lines and in Water Distribution Systems. Applied and Environmental Microbiology, 68, 5318-5325.

[2]   Parashar, D., Chauhan, D.S., Sharma, V.D., Chauhan, A., Chauhan, S.V. and Katoch, V.M. (2004) Optimization of Procedures for Isolation of Mycobacteria from Soil and Water Samples Obtained in Northern India. Applied and Environmental Microbiology, 70, 3751-3753.

[3]   Radomski, N., Cambau, E., Moulin, L., Haenn, S., Moilleron, R. and Lucas, F.S. (2010) Comparison of Culture Methods for Isolation of Nontuberculous Mycobacteria from Surface Waters. Applied and Environmental Microbiology, 76, 3514-3520.

[4]   Kankya, C., Muwonge, A., Djonne, B., Munyeme, M., Opuda-Asibo, J., Skjerve, E., Oloya, J., Edvardsen, V. and Johansen, T.B. (2011) Isolation of Non-Tuberculous Mycobacteria from Pastoral Ecosystems of Uganda: Public Health Significance. BMC Public Health, 11, 320.

[5]   Heitkamp, M.A., Freeman, J.P., Miller, D.W. and Cerniglia, C.E. (1988) Pyrene Degradation by a Mycobacterium sp.: Identification of Ring Oxidation and Ring Fission Products. Applied and Environmental Microbiology, 54, 2556-2565.

[6]   Miller, C.D., Hall, K., Liang, Y.N., Nieman, K., Sorensen, D., Issa, B., Anderson, A.J. and Sims, R.C. (2004) Isolation and Characterization of Polycyclic Aromatic Hydrocarbon-Degrading Mycobacterium Isolates from Soil. Microbial ecology, 48, 230-238.

[7]   Maciel, H., Mathis, H., Lopes Ferreira, N., Lyew, D., Guiot, S., Monot, F., Greer, C.W. and Fayolle-Guichard, F. (2008) Use of Mycobacterium austroafricanum IFP 2012 in a MTBE-Degrading Bioreactor. Journal of Molecular Microbiology and Biotechnology, 15, 190-198.

[8]   Hennessee, C.T., Seo, J.S., Alvarez, A.M. and Li, Q.X. (2009) Polycyclic Aromatic Hydrocarbon-Degrading Species Isolated from Hawaiian Soils: Mycobacterium crocinum sp. nov., Mycobacterium pallens sp. nov., Mycobacterium rutilum sp. nov., Mycobacterium rufum sp. nov. and Mycobacterium aromaticivorans sp. nov. International Journal of Systematic and Evolutionary Microbiology, 59, 378-387.

[9]   Hofling-Lima, A.L., de Freitas, D., Sampaio, J.L., Leao, S.C. and Contarini, P. (2005) In Vitro Activity of Fluoroquinolones against Mycobacterium abscessus and Mycobacterium chelonae Causing Infectious Keratitis after LASIK in Brazil. Cornea, 24, 730-734.

[10]   Viana-Niero, C., Lima, K.V., Lopes, M.L., Rabello, M.C., Marsola, L.R., Brilhante, V.C., Durham, A.M. and Leao, S.C. (2008) Molecular Characterization of Mycobacterium massiliense and Mycobacterium bolletii in Isolates Collected from Outbreaks of Infections after Laparoscopic Surgeries and Cosmetic Procedures. Journal of Clinical Microbiology, 46, 850-855.

[11]   Duarte, R.S., Lourenco, M.C., Fonseca Lde, S., Leao, S.C., Amorim Ede, L., Rocha, I.L., Coelho, F.S., Viana-Niero, C., Gomes, K.M., da Silva, M.G., et al. (2009) Epidemic of Postsurgical Infections Caused by Mycobacterium massiliense. Journal of Clinical Microbiology, 47, 2149-2155.

[12]   Strabelli, T.M., Siciliano, R.F., Castelli, J.B., Demarchi, L.M., Leao, S.C., Viana-Niero, C., Miyashiro, K., Sampaio, R.O., Grinberg, M. and Uip, D.E. (2010) Mycobacterium chelonae Valve Endocarditis Resulting from Contaminated Biological Prostheses. The Journal of Infection, 60, 467-473.

[13]   Candido, P.H., Nunes Lde, S., Marques, E.A., Folescu, T.W., Coelho, F.S., de Moura, V.C., da Silva, M.G., Gomes, K.M., Lourenco, M.C., Aguiar, F.S., et al. (2014) Multidrug-Resistant Nontuberculous Mycobacteria Isolated from Cystic Fibrosis Patients. Journal of Clinical Microbiology, 52, 2990-2997.

[14]   Bland, C.S., Ireland, J.M., Lozano, E., Alvarez, M.E. and Primm, T.P. (2005) Mycobacterial Ecology of the Rio Grande. Applied and Environmental Microbiology, 71, 5719-5727.

[15]   Leao, S.C., Bernardelli, A., Cataldi, A., Zumarraga, M., Robledo, J., Realpe, T., Mejia, G.I., da Silva Telles, M.A., Chimara, E., Velazco, M., et al. (2005) Multicenter Evaluation of Mycobacteria Identification by PCR Restriction Enzyme Analysis in Laboratories from Latin America and the Caribbean. Journal of Microbiological Methods, 61, 193-199.

[16]   Lee, C.H., You, H.L., Wang, J.W., Tang, Y.F. and Liu, J.W. (2011) Prosthetic Joint Infection Caused by Mycobacterium alvei in an Elderly Patient. Journal of Clinical Microbiology, 49, 3096-3098.

[17]   Chimara, E., Ferrazoli, L., Ueky, S.Y., Martins, M.C., Durham, A.M., Arbeit, R.D. and Leao, S.C. (2008) Reliable Identification of Mycobacterial Species by PCR-Restriction Enzyme Analysis (PRA)-hsp65 in a Reference Laboratory and Elaboration of a Sequence-Based Extended Algorithm of PRA-hsp65 Patterns. BMC Microbiology, 8, 48.

[18]   Devulder, G., de Montclos, M.P. and Flandrois, J.P. (2005) A Multigene Approach to Phylogenetic Analysis Using the Genus Mycobacterium as a Model. International Journal of Systematic and Evolutionary Microbiology, 55, 293-302.

[19]   Hettick, J.M., Kashon, M.L., Simpson, J.P., Siegel, P.D., Mazurek, G.H. and Weissman, D.N. (2004) Proteomic Profiling of Intact Mycobacteria by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry, 76, 5769-5776.

[20]   Pignone, M., Greth, K.M., Cooper, J., Emerson, D. and Tang, J. (2006) Identification of Mycobacteria by Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry. Journal of Clinical Microbiology, 44, 1963-1970.

[21]   Lotz, A., Ferroni, A., Beretti, J.L., Dauphin, B., Carbonnelle, E., Guet-Revillet, H., Veziris, N., Heym, B., Jarlier, V., Gaillard, J.L., et al. (2010) Rapid Identification of Mycobacterial Whole Cells in Solid and Liquid Culture Media by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Journal of Clinical Microbiology, 48, 4481-4486.

[22]   Saleeb, P.G., Drake, S.K., Murray, P.R. and Zelazny, A.M. (2011) Identification of Mycobacteria in Solid-Culture Media by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Journal of Clinical Microbiology, 49, 1790-1794.

[23]   El Khechine, A., Couderc, C., Flaudrops, C., Raoult, D. and Drancourt, M. (2011) Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Identification of Mycobacteria in Routine Clinical Practice. PloS ONE, 6, e24720.

[24]   Shitikov, E., Ilina, E., Chernousova, L., Borovskaya, A., Rukin, I., Afanas’ev, M., Smirnova, T., Vorobyeva, A., Larionova, E., Andreevskaya, S., et al. (2012) Mass Spectrometry Based Methods for the Discrimination and Typing of Mycobacteria. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 12, 838-845.

[25]   Balazova, T., Makovcova, J., Sedo, O., Slany, M., Faldyna, M. and Zdrahal, Z. (2014) The Influence of Culture Conditions on the Identification of Mycobacterium Species by MALDI-TOF MS Profiling. FEMS Microbiology Letters, 353, 77-84.

[26]   Mather, C.A., Rivera, S.F. and Butler-Wu, S.M. (2014) Comparison of the Bruker Biotyper and Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Systems for Identification of Mycobacteria Using Simplified Protein Extraction Protocols. Journal of Clinical Microbiology, 52, 130-138.

[27]   Dunne Jr., W.M., Doing, K., Miller, E., Miller, E., Moreno, E., Baghli, M., Mailler, S., Girard, V., van Belkum, A. and Deol, P. (2014) Rapid Inactivation of Mycobacterium and Nocardia Species before Identification Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Journal of Clinical Microbiology, 52, 3654-3659.

[28]   Balada-Llasat, J.M., Kamboj, K. and Pancholi, P. (2013) Identification of Mycobacteria from Solid and Liquid Media by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in the Clinical Laboratory. Journal of Clinical Microbiology, 51, 2875-2879.

[29]   Telenti, A., Marchesi, F., Balz, M., Bally, F., Bottger, E.C. and Bodmer, T. (1993) Rapid Identification of Mycobacteria to the Species Level by Polymerase Chain Reaction and Restriction Enzyme Analysis. Journal of Clinical Microbiology, 31, 175-178.

[30]   Selvaraju, S.B., Khan, I.U. and Yadav, J.S. (2005) A New Method for Species Identification and Differentiation of Mycobacterium chelonae Complex Based on Amplified Hsp65 Restriction Analysis (AHSPRA). Molecular and Cellular Probes, 19, 93-99.

[31]   Adekambi, T. and Drancourt, M. (2004) Dissection of Phylogenetic Relationships among 19 Rapidly Growing Mycobacterium Species by 16S rRNA, hsp65, sodA, recA and rpoB Gene Sequencing. International Journal of Systematic and Evolutionary Microbiology, 54, 2095-2105.

[32]   McNabb, A., Eisler, D., Adie, K., Amos, M., Rodrigues, M., Stephens, G., Black, W.A. and Isaac-Renton, J. (2004) Assessment of Partial Sequencing of the 65-Kilodalton Heat Shock Protein Gene (hsp65) for Routine Identification of Mycobacterium Species Isolated from Clinical Sources. Journal of Clinical Microbiology, 42, 3000-3011.

[33]   Beccati, M., Peano, A. and Gallo, M.G. (2007) Pyogranulomatous panniculitis Caused by Mycobacterium alvei in a Cat. The Journal of Small Animal Practice, 48, 664.

[34]   Hsiao, C.H., Lin, Y.T., Lai, C.C. and Hsueh, P.R. (2010) Clinicopathologic Characteristics of Nontuberculous Mycobacterial Lung Disease in Taiwan. Diagnostic Microbiology and Infectious Disease, 68, 228-235.

[35]   Kim, C.K., Choi, S.I., Jeon, B.R., Lee, Y.W., Lee, Y.K. and Shin, H.B. (2014) Pulmonary Infection Caused by Mycobacterium neoaurum: The First Case in Korea. Annals of Laboratory Medicine, 34, 243-246.

[36]   Poh, M.E., Liam, C.K., Ng, K.P. and Tan, R. (2014) Mycobacterium brisbanense Species Nova Isolated from a Patient with Chronic Cavitary Lung Infection. Chest, 145, 858-860.

[37]   Puthalapattu, S. and Metersky, M.L. (2011) Mycobacterium nebraskense as a Cause of Nodular Pulmonary Disease. Connecticut Medicine, 75, 527-529.

[38]   Lee, E.S., Lee, M.Y., Han, S.H. and Ka, J.O. (2008) Occurrence and Molecular Differentiation of Environmental Mycobacteria in Surface Waters. Journal of Microbiology and Biotechnology, 18, 1207-1215.

[39]   Dai, J., Chen, Y. and Lauzardo, M. (2011) Web-Accessible Database of hsp65 Sequences from Mycobacterium Reference Strains. Journal of Clinical Microbiology, 49, 2296-2303.