ALAMT  Vol.5 No.3 , September 2015
Tight Monomials in Quantum Group for Type A5 with t ≤ 6
Abstract: All tight monomials in quantum group for type A5 with t ≤ 6 are determined in this paper.
Cite this paper: Hu, Y. , Li, G. and Wang, J. (2015) Tight Monomials in Quantum Group for Type A5 with t ≤ 6. Advances in Linear Algebra & Matrix Theory, 5, 63-75. doi: 10.4236/alamt.2015.53007.

[1]   Drinfel’d, V.G. (1985) Hopf Algebras and the Quantum Yang-Baxter Equation. Soviet Mathematics Doklady, 32, 254-258.

[2]   Jimbo, M. (1985) A q-Difference Analogue of and the Yang-Baxter Equation. Letters in Mathematical Physics, 10, 63-69.

[3]   Lusztig, G. (1990) Canonical Bases Arising from Quantized Enveloping Algebras. Journal of the American Mathematical Society, 3, 447-498.

[4]   Lusztig, G. (1993) Tight Monomials in Quantized Envelwoping Algebras. In: Joseph, A. and Schnider, S., Eds., Quantum Deformation of Algebra and Their Representations, Israel Mathematical Conference Proceedings, Vol. 7, Bar-Ilan University, 117-132.

[5]   Xi, N.H.(1999) Canonical Basis for Type A3. Communications in Algebra, 27, 5703-5710.

[6]   Hu, Y.W., Ye, J.C. and Yue, X.Q. (2003) Canonical Basis of Type A4 (I)-Monomial Elements. Journal of Algebra, 263, 228-245.

[7]   Hu, Y.W. and Ye, J.C. (2005) Canonical Bases of Type A4 (II)-Polynomial Elements in One Variable. Communications in Algebra, 33, 3855-3877.

[8]   Li, X.C. and Hu, Y.W. (2012) Ploynomical Elements in Canonical Basis of Type B with Two-Dimensional Support for A4 (I). Algebra Colloquium, 19, 117-136.

[9]   Marsh, R. (1998) More Tight Monomials in Quantized Enveloping Algebras. Journal of Algebra, 204, 711-732.

[10]   Reineke, M. (2001) Monomials in Canonical Bases of Quantum Groups and Quadratic Forms. Journal of Pure and Applied Algebra, 157, 301-309.

[11]   Wang, X.M. (2010) Tight Monomials for Type G2 and A3. Communications in Algebra, 38, 3597-3615.

[12]   Deng, B.M. and Du, J. (2010) Tight Monomials and Monomial Basis Property. Journal of Algebra, 324, 3355-3377.