[1] Yildirim, Y. and Hughes, R. (2003) An Experimental Study of CO2 Separation Using a Silica Based Composite Membrane. Process Safety and Environmental Protection, 81, 257-261.
http://dx.doi.org/10.1205/095758203322299789
[2] Chen, H.Z., Xiao, Y.C. and Chung, T. (2011) Multi-Layer Composite Hollow Fiber Membranes Derived from Poly (Ethylene Glycol)(PEG) Containing Hybrid Materials for CO2/N2 Separation. Journal of Membrane Science, 381, 211-220.
http://dx.doi.org/10.1016/j.memsci.2011.07.023
[3] Sá, S., Silva, H., Sousa, J.M. and Mendes, A. (2009) Hydrogen Production by Methanol Steam Reforming in a Membrane Reactor: Palladium vs Carbon Molecular Sieve Membranes. Journal of Membrane Science, 339, 160-170.
http://dx.doi.org/10.1016/j.memsci.2009.04.045
[4] Shao, L., Low, B.T., Chung, T. and Greenberg, A.R. (2009) Polymeric Membranes for the Hydrogen Economy: Contemporary Approaches and Prospects for the Future. Journal of Membrane Science, 327, 18-31.
http://dx.doi.org/10.1016/j.memsci.2008.11.019
[5] Chen, H., Xiao, Y. and Chung, T. (2010) Synthesis and Characterization of Poly (Ethylene Oxide) Containing Copolyimides for Hydrogen Purification. Polymer, 51, 4077-4086.
http://dx.doi.org/10.1016/j.polymer.2010.06.046
[6] Göttlicher, G. and Pruschek, R. (1997) Comparison of CO2 Removal Systems for Fossil-Fuelled Power Plant Processes. Energy Conversion and Management, 38, S173-S178.
http://dx.doi.org/10.1016/S0196-8904(96)00265-8
[7] Keizer, K., Uhlhorn, R. and Burggraaf, A. (1988) Gas Separation Mechanisms in Microporous Modified γ-Al2O3 Membranes. Journal of Membrane Science, 39, 285-300.
http://dx.doi.org/10.1016/S0376-7388(00)80935-7
[8] De Lange, R., Hekkink, J., Keizer, K. and Burggraaf, A. (1995) Permeation and Separation Studies on Microporous Sol-Gel Modified Ceramic Membranes. Microporous Materials, 4, 169-186.
http://dx.doi.org/10.1016/0927-6513(95)00004-S
[9] Brinker, C., Ward, T., Sehgal, R., Raman, N., Hietala, S., Smith, D., et al. (1993) “Ultramicroporous” Silica-Based Supported Inorganic Membranes. Journal of Membrane Science, 77, 165-179.
http://dx.doi.org/10.1016/0376-7388(93)85067-7
[10] Yildirim, Y., Gobina, E. and Hughes, R. (1997) An Experimental Evaluation of High-Temperature Composite Membrane Systems for Propane Dehydrogenation. Journal of Membrane Science, 135, 107-115.
http://dx.doi.org/10.1016/S0376-7388(97)00133-6
[11] Keizer, K., Uhlhorn, R.J. and Burggraaf, T.J. (1995) Gas Separation Using Inorganic Membranes. Membrane Science and Technology, 2, 553-588.
http://dx.doi.org/10.1016/S0927-5193(06)80014-8
[12] Sing, K.S. (1985) Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57, 603-619.
http://dx.doi.org/10.1351/pac198557040603
[13] Smart, S., Liu, S., Serra, J.M., Diniz da Costa, J.C., Iulianelli, A. and Basile, A. (2013) 8—Porous Ceramic Membranes for Membrane Reactors. In: Basile, A., Ed., Handbook of Membrane Reactors, Woodhead Publishing, Cambridge, 298-336.
http://dx.doi.org/10.1533/9780857097330.2.298
[14] Gobina, E. (2006) Apparatus and Method for Separating Gases. U.S. Patent No. 7,048,778. U.S. Patent and Trademark Office, Washington DC.
[15] Gobina, E. (2007) Apparatus and Method for Separating Gases. U.S. Patent No. 7,297,184. U.S. Patent and Trademark Office, Washington DC.