Back
 EPE  Vol.7 No.9 , August 2015
High Molecular Permeance Dual-Layer Ceramic Membrane for Capturing CO2 from Flue Gas Stream
Abstract: With the objective to create technologically advanced materials to be scientifically applicable, dual-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing hybrid material onto a ceramic porous substrate for flue gas separation applications. The dual-layer silica alumina membrane was prepared by dip coating technique be-fore further drying in an oven at elevated temperature. The effects of substrate physical appear-ance, coating quantity, cross-linking agent, number of coatings and testing conditions on gas separation performance of the membrane have been investigated. Scanning electron microscope was used to investigate the development of coating thickness. The membrane shows impressive perm selectivity especially for CO2 and N2 binary mixture representing a stimulated flue gas stream.
Cite this paper: Nwogu, N. , Kajama, M. , Orakwe, I. and Gobina, E. (2015) High Molecular Permeance Dual-Layer Ceramic Membrane for Capturing CO2 from Flue Gas Stream. Energy and Power Engineering, 7, 418-425. doi: 10.4236/epe.2015.79040.
References

[1]   Yildirim, Y. and Hughes, R. (2003) An Experimental Study of CO2 Separation Using a Silica Based Composite Membrane. Process Safety and Environmental Protection, 81, 257-261.
http://dx.doi.org/10.1205/095758203322299789

[2]   Chen, H.Z., Xiao, Y.C. and Chung, T. (2011) Multi-Layer Composite Hollow Fiber Membranes Derived from Poly (Ethylene Glycol)(PEG) Containing Hybrid Materials for CO2/N2 Separation. Journal of Membrane Science, 381, 211-220.
http://dx.doi.org/10.1016/j.memsci.2011.07.023

[3]   Sá, S., Silva, H., Sousa, J.M. and Mendes, A. (2009) Hydrogen Production by Methanol Steam Reforming in a Membrane Reactor: Palladium vs Carbon Molecular Sieve Membranes. Journal of Membrane Science, 339, 160-170.
http://dx.doi.org/10.1016/j.memsci.2009.04.045

[4]   Shao, L., Low, B.T., Chung, T. and Greenberg, A.R. (2009) Polymeric Membranes for the Hydrogen Economy: Contemporary Approaches and Prospects for the Future. Journal of Membrane Science, 327, 18-31.
http://dx.doi.org/10.1016/j.memsci.2008.11.019

[5]   Chen, H., Xiao, Y. and Chung, T. (2010) Synthesis and Characterization of Poly (Ethylene Oxide) Containing Copolyimides for Hydrogen Purification. Polymer, 51, 4077-4086.
http://dx.doi.org/10.1016/j.polymer.2010.06.046

[6]   Göttlicher, G. and Pruschek, R. (1997) Comparison of CO2 Removal Systems for Fossil-Fuelled Power Plant Processes. Energy Conversion and Management, 38, S173-S178.
http://dx.doi.org/10.1016/S0196-8904(96)00265-8

[7]   Keizer, K., Uhlhorn, R. and Burggraaf, A. (1988) Gas Separation Mechanisms in Microporous Modified γ-Al2O3 Membranes. Journal of Membrane Science, 39, 285-300.
http://dx.doi.org/10.1016/S0376-7388(00)80935-7

[8]   De Lange, R., Hekkink, J., Keizer, K. and Burggraaf, A. (1995) Permeation and Separation Studies on Microporous Sol-Gel Modified Ceramic Membranes. Microporous Materials, 4, 169-186.
http://dx.doi.org/10.1016/0927-6513(95)00004-S

[9]   Brinker, C., Ward, T., Sehgal, R., Raman, N., Hietala, S., Smith, D., et al. (1993) “Ultramicroporous” Silica-Based Supported Inorganic Membranes. Journal of Membrane Science, 77, 165-179.
http://dx.doi.org/10.1016/0376-7388(93)85067-7

[10]   Yildirim, Y., Gobina, E. and Hughes, R. (1997) An Experimental Evaluation of High-Temperature Composite Membrane Systems for Propane Dehydrogenation. Journal of Membrane Science, 135, 107-115.
http://dx.doi.org/10.1016/S0376-7388(97)00133-6

[11]   Keizer, K., Uhlhorn, R.J. and Burggraaf, T.J. (1995) Gas Separation Using Inorganic Membranes. Membrane Science and Technology, 2, 553-588.
http://dx.doi.org/10.1016/S0927-5193(06)80014-8

[12]   Sing, K.S. (1985) Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57, 603-619.
http://dx.doi.org/10.1351/pac198557040603

[13]   Smart, S., Liu, S., Serra, J.M., Diniz da Costa, J.C., Iulianelli, A. and Basile, A. (2013) 8—Porous Ceramic Membranes for Membrane Reactors. In: Basile, A., Ed., Handbook of Membrane Reactors, Woodhead Publishing, Cambridge, 298-336.
http://dx.doi.org/10.1533/9780857097330.2.298

[14]   Gobina, E. (2006) Apparatus and Method for Separating Gases. U.S. Patent No. 7,048,778. U.S. Patent and Trademark Office, Washington DC.

[15]   Gobina, E. (2007) Apparatus and Method for Separating Gases. U.S. Patent No. 7,297,184. U.S. Patent and Trademark Office, Washington DC.

 
 
Top