Back
 AJPS  Vol.6 No.12 , August 2015
Morphological and Rheological Properties of Starches Separated from Cultivars of Rice (Oryza sativa L.) from North East India
Abstract: Starch granules isolated from different accessions of rice from North East India showed a typical polygonal morphology with size ranging from 3.4 ± 0.8 μm to 6.4 ± 1.2 μm. The apparent amylose content (AAC) of the granules varied from 1.9% to 28.33%. Our results identify starch from IC-583088 as “waxy” and IC-583085, IC-583038, DPRR-168 as “very low” amylo-. The coefficient of resistance to flow (n) for starch pastes from the varieties of rice studied in the present investigation recorded a value of <1.0. The observed “n” value deviates from the Newtonian flow indicating the pseudoplastic nature of starches isolated from these varieties. While starch pastes from the accession IC-583088 recorded the highest ‘‘n’’ value of 0.6, that from the accession IC-545197 showed the lowest value of 0.03. The variations in coefficient of resistance to flow clearly revealed a higher ‘‘n’’ value for starch pastes from the “waxy” and ‘‘low” amylo-cultivars than the “intermediate” or ‘‘high” amylo-cultivars. Our results clearly established characteristic rheological properties for starches from the accessions SKY-AK-1608, IC-583035, YS-RC-219, IC-564939 and IC-332963, which exhibited greater resistance to thinning and shearing than other varieties.
Cite this paper: Chrungoo, N. and Devi, A. (2015) Morphological and Rheological Properties of Starches Separated from Cultivars of Rice (Oryza sativa L.) from North East India. American Journal of Plant Sciences, 6, 2019-2031. doi: 10.4236/ajps.2015.612202.
References

[1]   Shannon, J.C. and Garwood, D.L. (1984) Genetics and Physiology of Starch Development. In: Whistler, R.L., Be-Miller, J.N. and Paschell, E.F., Eds., Starch: Chemistry and Technology, Academic Press, Orlando, 25.
http://dx.doi.org/10.1016/b978-0-12-746270-7.50009-4

[2]   Makella, M.J. and Laakso, S. (2006) Studies on Oat Starch with a Celloscope: Granule Size and Distribution. Starch/Starke, 36, 159-163.
http://dx.doi.org/10.1002/star.19840360503

[3]   Evers, A.D. (1971) Scanning Electron Microscopy of Wheat Starch. III. Granule Development in the Endosperm. Starch/Starke, 23, 157.
http://dx.doi.org/10.1002/star.19710230502

[4]   Simmonds, D.H. and O’Brien, T.P. (1981) Morphological and Biochemical Development of Wheat Endosperm. Advanced Cereal Science Technology, 4, 5-14.

[5]   Dengate, H. and Meredith, P. (1984) Variation in Size Distribution of Starch Granules from Wheat Grain. Journal of Cereal Science, 3, 83-90.
http://dx.doi.org/10.1016/S0733-5210(84)80021-1

[6]   Morrisson, W.R. and Scott, D.C. (1986) Measurements of the Dimensions of Wheat Starch Granule Populations Using a Coulter Counter with 100-Channel Analyser. Journal of Cereal Science, 4, 13-21.
http://dx.doi.org/10.1016/S0733-5210(86)80003-0

[7]   Lindebloom, N., Chang, P.R. and Tyler, R.T. (2004) Analytical, Biochemical and Hysiochemical Aspects of Starch Granule Size, with Emphasis on Small Granule Starches: A Review. Starch/Starke, 56, 89-99.
http://dx.doi.org/10.1002/star.200300218

[8]   Juliano, B.O. (1984) Rice Starch: Production, Properties and Uses. In: Whistler, R.L., BeMiller, J.N. and Paschall, E.F., Eds., Starch Chemistry and Technology, Academic Press, Orlando, 507-528.
http://dx.doi.org/10.1016/b978-0-12-746270-7.50022-7

[9]   Hoover, R., Smith, C., Zhou, Y. and Ratnayake, R.M.W.S. (2003) Physicochemical Properties of Canadian Oat Starches. Carbohydrate Polymers, 52, 253-261.
http://dx.doi.org/10.1016/S0144-8617(02)00271-0

[10]   Bao, J.S. and Bergman, C. (2004) The Functionality of Rice Starch. In: Eliasson, A.C., Ed., Starch in Food: Structure, Function and Applications, Woodhead Publishing, Cambridge, 152-184.

[11]   Tester, R.F., Karkalas, J. and Qi, X. (2004) Starch Composition, Fine Structure and Architecture. Journal of Cereal Science, 39, 151-165.
http://dx.doi.org/10.1016/j.jcs.2003.12.001

[12]   Hizukuri, S. (1986) Polymodal Distribution of the Chain Lengths of Amylopectins and Its Significance. Carbohydrate Research, 147, 342-347.
http://dx.doi.org/10.1016/S0008-6215(00)90643-8

[13]   Wang, L.T., Bograchava, T.Y. and Hedley, C. (1998) Starch: As Simple as A, B, C: Review. Journal of Experimental Botany, 49, 480-502.
http://dx.doi.org/10.1093/jxb/49.320.481

[14]   Imberty, A., Buleon, A., Tran, V. and Perez, S. (1991) Recent Advances in Knowledge of Starch Structure. Starch/ Starke, 43, 375-384.
http://dx.doi.org/10.1002/star.19910431002

[15]   Park, I., Ibanez, A.M. and Shoemaker, C.F. (2007) Rice Starch Molecular Size and Its Relationship with Amylose Content. Starch/Starke, 59, 69-77.
http://dx.doi.org/10.1002/star.200600568

[16]   Patindol, J., Gu, X. and Wang, Y.-J. (2009) Chemometric Analysis of the Gelatinization and Pasting Properties of Long-Grain Rice Starches in Relation to Fine Structure. Starch/Starke, 63, 3-11.
http://dx.doi.org/10.1002/star.200800022

[17]   Galliard, T. and Bowler, P. (1987) Morphology and Composition of Starch, In: Galliard, T., Ed. Starch: Properties and Potential, John Wiley & Sons, New York, 281.

[18]   Singh, N., Singh, J., Kaur, L., Sodhi, N.S. and Gill, B.S. (2003) Morphological, Thermal and Rheological Properties of Starches from Different Botanical Sources. Food Chemistry, 81, 219-231.
http://dx.doi.org/10.1016/S0308-8146(02)00416-8

[19]   Tester, R.F. and Morrison, W.R. (1990) Swelling and Gelatinization of Cereal Starches. 1. Effects of Amylopectins, Amylose, and Lipids. Cereal Chemistry, 67, 551-557.

[20]   Graybosch, R.A. (1998) Waxy Wheats: Origin, Properties and Prospects. Trends in Food Science and Technology, 9, 135-142.
http://dx.doi.org/10.1016/S0924-2244(98)00034-X

[21]   Bligh, F.J. (1999) Genetic Manipulation of Starch Biosynthesis: Progress and Potential. Biotechnology and Genetic Engineering Reviews, 16, 177-201.
http://dx.doi.org/10.1080/02648725.1999.10647974

[22]   Frei, M., Siddhuraju, P. and Becker, K. (2003) Studies on the in Vivo Starch Digestibility and the Glycemic Index of Six Different Indigenous Rice Cultivars from the Philippines. Food Chemistry, 83, 395-402.
http://dx.doi.org/10.1016/S0308-8146(03)00101-8

[23]   Mao, A.A., Hynniewta, T.M. and Sanjappa, M. (2009) Plant Wealth of Northeast India with Reference to Ethnobotany. Indian Journal of Traditional Knowledge, 8, 96-103.

[24]   Takaoka, M., Wantanabe, S., Sassa, H., Yamamori, M., Nakamura, T., Sasakuma, T. and Hirano, H. (1997) Structural Characterization of High Molecular Weight Starch Granule-Bound Proteins in Wheat (Triticum aestivum L.). Journal of Agriculture and Food Chemistry, 45, 2929-2934.
http://dx.doi.org/10.1021/jf9702656

[25]   David, G.S., Russel, K.D., Jay-Lin, J. and George, E.I. (2006) Structures and Functional Properties of Starch from Seeds of Three Soyabean (Glycine max L. Merr.) Varieties. Starch/Starke, 58, 509-519.
http://dx.doi.org/10.1002/star.200600534

[26]   Juliano, B.O. (1971) A Simplified Assay for Milled Rice Amylose. Cereal Science Today, 16, 334-340.

[27]   Thongbam, P.D., Raychaudhury, M., Durai, A., Das, S.P., Ramesh, T., Ramya, K.T., Fayaz, A.R. and Ngachan, S.V. (2012) Studies on Grain and Food Quality Traits of Some Indigenous Rice Cultivars of North-Eastern Hill Region of India. Journal of Agricultural Science, 4, 259-270.

[28]   Li, Y., Shoemaker, C.F., Ma, T., Moon, T. and Zhong, F. (2008) Structure-Viscosity Relationships of Starches from Different Rice Varieties during Heating. Food Chemistry, 106, 1105-1115.
http://dx.doi.org/10.1016/j.foodchem.2007.07.039

[29]   Cruz, N.D. and Khush, G.S. (2000) Rice Grain Quality Evaluation Procedures. In: Singh, R.K., Singh, U.S. and Khush, G.S., Eds., Aromatic Rices, Oxford and IBH Publishing Co Pvt. Ltd, New Delhi, 15-28.

[30]   Yeh, A.-I. and Li, J.-Y. (1996a) A Continuous Measurement of Swelling of Rice Starch during Heating. Journal of Cereal Science, 23, 277-283.
http://dx.doi.org/10.1006/jcrs.1996.0028

[31]   Li, J.-Y. and Yeh, A.-I. (2001) Relationships between Thermal, Rheological Characteristics and Swelling Power for Various Starches. Journal of Food Engineering, 50, 141-148.
http://dx.doi.org/10.1016/S0260-8774(00)00236-3

[32]   Zaidul, I.S.M., Yamauchi, H., Kim, S.J., Hashimoto, N. and Noda, T. (2007) RVA Study of Mixtures of Wheat Flour and Potato Starches with Different Phosphorus Content. Food Chemistry, 102, 1105-1111.
http://dx.doi.org/10.1016/j.foodchem.2006.06.056

[33]   Puncha-Arnon, S., Puttanlek, C., Rungsardthong, V., Pathipanawat, W. and Uttapap, D. (2007) Changes in Physicochemical Properties and Morphology of Canna Starches during Rhizomal Development. Carbohydrate Polymers, 70, 206-217.
http://dx.doi.org/10.1016/j.carbpol.2007.03.020

[34]   Singh, S. and Singh, N. (2010) Relationship of Granule Size Distribution and Amylopectin Structure with Pasting, Thermal, and Retrogradation Properties in Wheat Starch. Journal of Agriculture and Food Chemistry, 58, 1180-1188.
http://dx.doi.org/10.1021/jf902753f

[35]   Manners, D.J. (1979) The Enzymatic Degradation of Starches. In: Blanshard, J.M.V. and Mitchell, J.R., Eds., Polysaccharides in Food, Butterworths, London, 5-91.
http://dx.doi.org/10.1016/B978-0-408-10618-4.50010-X

[36]   Wang, Y.-X., Ni, S., Chen, H.-Q., Liu, G.-F., Yang, J., Duan, B.-W. and Zhu, X.-D. (2010) Improvement of Method for Evaluating Amylose Content in Rice at Low Generations of Breeding. Chinese Journal of Rice Science, 24, 93-98.

[37]   Dobo, M., Ayers, M., Walker, G. and Park, W.D. (2010) Polymorphism in the GBSS Gene Affects Amylose Content in US and European Rice Germplasm. Journal of Cereal Science, 52, 450-456.
http://dx.doi.org/10.1016/j.jcs.2010.07.010

[38]   Jimenez, R.R., Resurreccion, A.P. and Fitzgerald, M.A. (2010) Moving from Apparent to Actual Amylose in Rice. Proceedings of the 28th International Rice Research Conference, Hanoi, 8-12 November 2010, pp.

[39]   Hoi, T.T., Nishi, A. and Satoh, H. (2008) Diversity of Granule Bound Starch Synthesis (GBSS) Levels in North Vietnam Local Rice Cultivars. Rice Genetics Newsletter, 24, 62-64.

[40]   Mutters, R.G. and Thomson, J.F. (2009) Rice Quality Handbook. University of California Agriculture and Natural Resources Pub. No. 3514.

[41]   Lawal, O.S., Lapasin, R., Bellich, B., Olayiwola, T.O., Cesaro, A., Yoshimura, M. and Nishinari, K. (2011) Rheology and Functional Properties of Starches Isolated from Five Improved Rice Varieties from West Africa. Food Hydrocolloids, 25, 1785-1792.
http://dx.doi.org/10.1016/j.foodhyd.2011.04.010

[42]   Jayamani, P., Negrao, S., Brites, C. and Oliveira, M.M. (2007) Potential of Waxy Gene Microsatellite and Single-Nucleotide Polymorphisms to Develop Japonica Varieties with Desired Amylose Levels in Rice (Oryza sativa L.). Journal Cereal Science, 46, 178-186.
http://dx.doi.org/10.1016/j.jcs.2007.03.003

[43]   Rao, M.A., Okechukwu, P.E. and Silva, D.R. (1997) Rheological Behavior of Heated Starch Dispersions in Excess Water: Role of Starch Granule. Carbohydrate Polymers, 33, 273-283.
http://dx.doi.org/10.1016/S0144-8617(97)00025-8

[44]   Nurul, M.I., Azemi, B.M.N.M. and Manan, D.M.A. (1999) Rheological Behaviour of Sago (Metroxylon sagu) Starch Paste. Food Chemistry, 64, 501-505.
http://dx.doi.org/10.1016/S0308-8146(98)00145-9

[45]   Gibiński, M., Kowalski, S., Sady, M., Krawontka, J., Tomasik, P. and Sikora, M. (2006) Thickening of Sweet and Sour Sauces with Various Polysaccharide Combinations. Journal of Food Engineering, 75, 407-414.
http://dx.doi.org/10.1016/j.jfoodeng.2005.04.054

[46]   Morrison, W.R. (1995) Starch Lipids and How They Relate to Starch Granule Structure and Functionality. Cereal Foods World, 40, 437-446.

 
 
Top