WJCMP  Vol.5 No.3 , August 2015
Entanglement: A Modern Aspect of Nature
Show more
Abstract: The intention of this paper is to provide an easy to understand introduction to the peculiarities of entangled systems. A novel description for strong (mass entanglement) and weak (spin-or-bital and thermal entanglement) quantum entangled particles is discussed and applied to the phenomena of superconductivity, superfluidity and ultracold gases. A brief statement about how to represent the physical reality of quantum-entanglement as Quantum-Field-Theory (QFT) is noted.
Cite this paper: Cordelair, J. (2015) Entanglement: A Modern Aspect of Nature. World Journal of Condensed Matter Physics, 5, 244-248. doi: 10.4236/wjcmp.2015.53025.

[1]   Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. Annalen der Physik und Chemie, 17, 891-921.

[2]   de Broglie, L. (1929) The Wave Nature of the Electron. Nobel Lecture, 12.

[3]   Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780.

[4]   Afriat, A. and Selleri, F. (1999) The Einstein, Podolsky, and Rosen Paradox in Atomic, Nuclear, and Particle Physics. Plenum Press, New York.

[5]   Cordelair, J. (2014) Superconductivity. World Journal of Condensed Matter Physics, 4, 241-242.

[6]   Kapitza, P. (1938) Viscosity of Liquid Helium below the λ-Point. Nature, 141, 74.

[7]   Fairbank, H.A. and Lane, C.T. (1949) Rollin Film Rates in Liquid Helium. Physical Review, 76, 1209-1211.

[8]   Hau, L.V. (2001) Frozen Light. Scientific American, 285, 52-59.