JEMAA  Vol.3 No.7 , July 2011
Enhancement of Phase Matching Ability in One-Dimensional Photonic Crystal through Plasma Materials
Abstract: We have theoretically studied the modal dispersion equation and effective refractive index of one-dimensional plasma photonic crystals (1-D PPCs) having different materials in one unit cell. The dispersion relations related for such structure is derived by solving Maxwell’s equation using the transfer matrix method. It is found that the presence of plasma in a unit cell enhanced the phase matching ability and provides additional degree of freedom to control phase matching condition compared to the conventional one-dimensional photonic crystals (1-D PCs).
Cite this paper: nullS. Prasad, V. Singh and A. Singh, "Enhancement of Phase Matching Ability in One-Dimensional Photonic Crystal through Plasma Materials," Journal of Electromagnetic Analysis and Applications, Vol. 3 No. 7, 2011, pp. 255-260. doi: 10.4236/jemaa.2011.37041.

[1]   J. D. Giannopoulos, P. Villeneuve and S. Fan, “Photonic Crystals: Putting a New Twist on Light,” Nature, Vol. 386, No. 143, 1997, pp. 143-149. doi:10.1038/386143a0

[2]   L.-G. Wang, H. Chen and S. Y. Zhu, “Omnidirectional Gap and Defect Mode of One-Dimensional Photonic Crystals with Single Negative Materials,” Physical Review B, Vol. 70, No. 245102, 2004, pp. 1-6.

[3]   V. Kuzmiak and A. Muradudin, “Photonic Band Gap in One and Two Dimensional Periodic Systems with Metallic Components in the Presence of Dissipation,” Physical Review B, Vol. 55, No. 12, 1997, pp. 7427-7444. doi:10.1103/PhysRevB.55.7427

[4]   C. J. Wu, “Transmission and Reflection in a Periodic Superconductor/Dielectric Film Multilayer Structure,” Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2006, pp. 1991-1996. doi:10.1163/156939305775570468

[5]   J. C. McCalmont, M. M. Sigalas, G. Tuttle, K. M. Ho and C. M. Soukoulis, “A Layer-by-Layer Metallic Photonic Band Gap Structure,” Applied Physics Letters, Vol. 68, No. 19, 1996, pp. 2759-2761. doi:10.1063/1.115589

[6]   A. A. Goncharov, A. V. Zatuagan and I. M. Protsenko, “Focusing and Control of Multiaperture Ion Beam of Plasma Lense,” IEEE Transactions of Plasma Science, Vol. 21, No. 5, 1993, pp. 578-581. doi:10.1109/27.249646

[7]   B. Chaudhury and S. Chaturvedi, “Three-Dimensional Computation of Reduction in Radar Cross Section Using Plasma Shielding,” IEEE Transactions of Plasma Science, Vol. 33, No. 6, 2005, pp. 2027-2034. doi:10.1109/TPS.2005.860122

[8]   T. Dwyer, J. Greig, D. Murphy, et al., “On the Feasibility of Using an Atmospheric Discharge Plasma as an RF Antenna”, IEEE Transactions on Antenna and Propagation, Vol. 32, No. 2, 1984, pp. 141-146. doi:10.1109/TAP.1984.1143275

[9]   S. P. Kuo and J. Fatith, “Interaction of an Electromagnetic Wave with a Rapidly Created Spatially Periodic Plasma”, Physical Review E, Vol. 56, No. 2, 1997, pp. 2143-2150. doi:10.1103/PhysRevE.56.2143

[10]   H. Hoja and A. Mase, “Dispersion Relation of EM Waves in One Dimensional Plasma Photonic Crystal,” Journal of Plasma Fusion Research, Vol. 80, No. 2, 2004, pp. 89-90. doi:10.1585/jspf.80.89

[11]   S. Prasad, V. Singh and A. K. Singh, “Modal Propagation Characteristics of EM Waves in Ternary One-Dimensional Plasma Photonic Crystals,” Optik, Vol. 121, No. 16, 2010, pp. 1520-1528. doi:10.1016/j.ijleo.2009.02.024

[12]   S. K. Srivastava and S. P. Ojha, “Omnidirectional Reflection Bands in One-Dimensional Photonic Crystal Structure Using Fullerene Films,” Progress In Electromagnetics Research, Vol. 74, 2007, pp. 181-194. doi:10.2528/PIER07050202

[13]   P. Yeh, A. Yuriv and S. S. Hony, “Electromagnetic Propagation in Periodic Stratified Media,” Journal of the Optical Society of America A, Vol. 67, No. 4, 1977, pp. 423-438. doi:10.1364/JOSA.67.000423

[14]   G. Cerullo, M. Nisoli, S. Stagira, S. de Silvestri, G. Tempea, F. Krausz and F. Krausz, “Mirror Dispersion Controlled Sub-10-Fs Optical Parametric Amplifier in the Visible,” Optics Letters, Vol. 24, No. 21, 1999, pp. 1529-1531. doi:10.1364/OL.24.001529

[15]   N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin and A. M. Zheltikov, “Compression of Ultrashort Light Pulses in Photonic Crystals: When Envelopes Cease to be Slow,” Optics Communications, Vol. 159, No. 1-3, 1999, pp. 191-202. doi:10.1016/S0030-4018(98)00571-9

[16]   V. Tarasishin, S. A. Magnitskii and A. M. Zheltikov, “Matching Phase and Group Velocities in Second-Har- monic Generation in Finite One-Dimensional Photonic Band-Gap Structures,” Laser Physics, Vol. 11, No. 1, 2001, pp. 31-38.

[17]   A. N. Naumov and A. M. Zheltikov, “Ternary One-Di- mentional Photonic Band Gap Structures: Dispersion Relation, Extended Phase Matching Abilities, and Attosecond Outlook,” Laser Physics, Vol. 11, No.7, 2001, pp. 879-884.

[18]   P. Yeh, “Optical Waves in Layered Media,” John Wiley and Sons, New York, 1988.

[19]   B. Guo, “Transfer Matrix for Obliquely Incident Electromagnetic Waves Propagating in One Dimension Plasma Photonic Crystals,” Plasma Science and Technology, Vol. 11, No. 1, 2009, pp. 18-22. doi:10.1088/1009-0630/11/1/04

[20]   M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden and I. Nefedov, “Dispersive Properties of Finite, One-Dimensional Photonic Band Gap Structures: Applications to Nonlinear Quadratic Interactions,” Physical Review E, Vol. 60, No. 4, 1999, pp. 4891-4898. doi:10.1103/PhysRevE.60.4891