ABB  Vol.6 No.8 , August 2015
Obesity Effect on the Spine
Abstract: The objective of this work is to study the effect of obesity on the intervertebral discs and provide system analysis of the spine between multiple configurations of people, and know the risks due to this eccentric load (Big Belly). The results show that in all three previous loadings (obese people), the distributions of stress and strain are high in both D1 and D10 intervertebral discs. This shows that the distance between the point of load application and the spine axis has an important role in solicitation increasing and therefore its deformation: as main conclusion is that the concentration of the mass of stomach fat is a risk factor that leads to pain problems, deformation and herniated disc.
Cite this paper: Zahaf, S. , Mansouri, B. , Belarbi, A. and Azari, Z. (2015) Obesity Effect on the Spine. Advances in Bioscience and Biotechnology, 6, 556-571. doi: 10.4236/abb.2015.68059.

[1]   Grillo, G., Koca, O., Eskitascioglu, G. and Usumez, A. (2005) Three Dimensional Finite Element Analysis of Functional Stresses in Different Bone Locations Produced by Implants Placed in the Maxillary Posterior Region of the Sinus Floor. Journal of Prosthetic Dentistry, 93, 38-44.

[2]   Brunski, J.B. (1997) Biomechanics of Dental Implants. In: Block, M., Kent, J.N. and Guerra, L.R., Eds., Implants in Dentistry, W.B. Saunders, Philadelphia, 63-71.

[3]   Thomas, M. (2008) Contribution a l’analyse biomecanique et a l’evaluation des implants rachidiens. L’école nationale superieure d’arts et metiers specialite “biomecanique”, Paris.

[4]   Dr Kassab, M. Centre Avicenne Médical, 2 Av Tahar Sfar, 2092, El Manar 2, Tunis.

[5]   Dietrich, M., Kedzior, K., Borkowski, P., Krzesinski, G., Skalski, K. and Zagrajek, T. (2005) A Nonlinear Analysis of the Human Vertebral Column and Medical Recommendations That Follow. Bulletin of the Polish Academy of Sciences, Technical Sciences, 53, 179-194.

[6]   White Iii, A.A. and Panjabi, M.M. (1990) Clinical Biomechanics of the Spine.

[7]   Marcovschi Champain, S. (2008) Corrélations Entre Les Paramètres Biomécaniques Du Rachis Et Les Indices Cliniques Pour L’analyse Quantitative Des Pathologies Du Rachis Lombaire Et De Leur Traitement Chirurgical, Enam, Paris.

[8]   Starmans, F.J., Steen, W.H. and Bosman, F. (1993) A Three-Dimensional, Finite-Element Analysis of Bone Around Dental Implants in an Edentulous Human Mandible. Archives of Oral Biology, 38, 491-496.

[9]   Pr. Francois, L. (1997) Biomécanique Et Ostéosynthèse Du Rachis Ensm-Lbm Conférences D’enseignement De La Sofcot.

[10]   Ibarz, E., Más, Y., Mateo, J., Lobo-Escolar, A., Herrera, A. and Gracia, L. (2013) Instability of the Lumbar Spine Due to Disc Degeneration. A Finite Element Simulation. Advances in Bioscience and Biotechnology, 4, 548-556.

[11]   Song, M., Zhang, Z., Lu, M., Zong, J., Dong, C., Ma, K. and Wang, S. (2014) Four Lateral Mass Screw Fixation Techniques in Lower Cervical Spine Following Laminectomy: A Finite Element Analysis Study of Stress Distribution. Biomedical Engineering Online, 13, 115.

[12]   Rundell, S.A., Isaza, J.E. and Kurtz, S.M. (2011) Biomechanical Evaluation of a Spherical Lumbar Interbody Device at Varying Levels of Subsidence. SAS Journal, 5, 16-25.

[13]   Goel, V.K., Mehta, A., Jangra, J., Faizan, A., Kiapour, A., Hoy, R.W. and Fauth, A.R. (2007) Anatomic Facet Replacement System (AFRS) Restoration of Lumbar Segment Mechanics to Intact: A Finite Element Study and in Vitro Cadaver Investigation. SAS Journal, 1, 46-54.

[14]   Holekamp, S., Goel, V., Kuroki, H., Huntzinger, J. and Ebraheim, N. (2007) Optimal Intervertebral Sealant Properties for the Lumbar Spinal Disc: A Finite-Element Study. SAS Journal, 1, 68-73.

[15]   Castellvi, A.E., Huang, H., Vestgaarden, T., Saigal, S., Clabeaux, D.H. and Pienkowski, D. (2007) Stress Reduction in Adjacent Level Discs via Dynamic Instrumentation: A Finite Element Analysis. SAS Journal, 1, 74-81.

[16]   López, E., Ibarz, E., Herrera, A., Mateo, J., Lobo-Escolar, A., Puértolas, S. and Gracia, L. (2014) Probability of Osteoporotic Vertebral Fractures Assessment Based on DXA Measurements and Finite Element Simulation. Advances in Bioscience and Biotechnology, 5, 527-545.

[17]   Kiapour, A., Kiapour, A.M., Kodigudla, M., Hill, G.M., Mishra, S. and Goel, V.K. (2012) A Biomechanical Finite Element Study of Subsidence and Migration Tendencies in Stand-Alone Fusion Procedures—Comparison of an in Situ Expandable Device with a Rigid Device. Journal of Spine, 1, 4.

[18]   Zheng, S.-N., Yao, Q.-Q., Wang, L.-M., Hu, W.-H., Wei, B., Xu, Y. and Zhang, D.-G. (2013) Biomechanical Effects of Semi-Constrained Integrated Artificial Discs on Zygapophysial Joints of Implanted Lumbar Segments. Experimental and Therapeutic Medicine, 6, 1423-1430.

[19]   Byun, D.-H., Ah Shin, D., Kim, J.-M., Kim, S.-H. and Kim, H.-I. (2012) Finite Element Analysis of the Biomechanical Effect of Coflex™ on the Lumbar Spine, Laboratory Investigation. Korean Journal of Spine, 9, 131-136.

[20]   Lan, C.-C., Kuo, C.-S., Chen, C.-H. and Hu, H.-T. (2013) Finite Element Analysis of Biomechanical Behavior of Whole Thoraco-Lumbar Spine with Ligamentous Effect. The Changhua Journal of Medicine, 11, 26-41.

[21]   Natarajan, R.N. and Andersson, G.B.J. (1997) Modeling the Annular Incision in a Herniated Lumbar Intervertebral Disc to Study Its Effect on Disc Stability. Computers & Structures, 64, 1291-1297.

[22]   Pitzen, T., Geisler, F.H., Matthis, D., Storz, H.M., Pedersen, K. and Steudel, W.I. (2001) The Influence of Cancellous Bone Density on Load Sharing in Human Lumbar Spine: A Comparison between an Intact and a Surgically Altered Motion Segment. European Spine Journal, 10, 23-29.

[23]   Polikeit, A. (2002) Finite Element Analysis of the Lumbar Spine: Clinical Application. Inaugural Dissertation, University of Bern, Bern.

[24]   Denoziere, G. (2004) Numerical Modeling of a Ligamentous Lumber Motion Segment. Master’s Thesis, Department of Mechanical Engineering, Georgia Institute of Technology, Georgia.

[25]   Gwanseob, S. (2005) Viscoelastic Responses of the Lumbar Spine during Prolonged Stooping. PhD Dissertation, North Carolina State University, Raleigh.

[26]   Sairyo, K., Goel, V.K., Masuda, A., Vishnubhotla, S., Faizan, A., Biyani, A., Ebraheim, N., Yonekura, D., Murakami, R.I. and Terai, T. (2006) Three-Dimensional Finite Element Analysis of the Pediatric Lumbar Spine. European Spine Journal, 15, 923-929.

[27]   Rohlmann, A., Burra, N.K., Zander, T. and Bergmann, G. (2007) Comparison of the Effects of Bilateral Posterior Dynamic and Rigid Fixation Devices on the Loads in the Lumbar Spine: A Finite Element Analysis. European Spine Journal, 16, 1223-1231.

[28]   Wilke, H.J., Neef, P., Caimi, M., Hoogland, T. and Claes, L.E. (1999) New in Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life. Spine, 24, 755-762.

[29]   Smit, T., Odgaard, A. and Schneider, E. (1997) Structure and Function of Vertebral Trabecular Bone. Spine, 22, 2823-2833.

[30]   Sharma, M., Langrana, N.A. and Rodriguez, J. (1995) Role of Ligaments and Facets in Lumbar Spinal Stability. Spine, 20, 887-900.

[31]   Lee, K. and Teo, E. (2004) Effects of Laminectomy and Facetectomy on the Stability of the Lumbar Motion Segment. Medical Engineering & Physics, 26, 183-192.

[32]   Rohlmann, A., Zander, T., Schmidt, H., Wilke, H.J. and Bergmann, G. (2006) Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment Using the Finite Element Method. Journal of Biomechanics, 39, 2484-2490.

[33]   Ng, H.W. and Teo, E.C. (2001) Nonlinear Finite-Element Analysis of the Lower Cervical Spine (C4-C6) under Axial Loading. Journal of Spinal Disorders, 14, 201-210.

[34]   Ng, H.-W., Teo, E.-C. and Zhang, Q.-H. (2004) Influence of Laminotomies and Laminectomies on Cervical Spine Biomechanics under Combined Flexion-Extension. Journal of Applied Biomechanics, 20, 243-259.

[35]   Gong, Z.Q., Chen, Z.X., Feng, Z.Z., Cao, Y.W., Jiang, C. and Jiang X.X. (2014) Finite Element Analysis of 3 Posterior Fixation Techniques in the Lumbar Spine. Orthopedics, 37, E441-E448.

[36]   Kim, H.-J., Kang, K.T., Chang, B.-S., Lee, C.-K., Kim, J.-W. and Yeom, J.-S. (2014) Biomechanical Analysis of Fusion Segment Rigidity upon Stress at Both the Fusion and Adjacent Segments: A Comparison between Unilateral and Bilateral Pedicle Screw Fixation. Yonsei Medical Journal, 55, 1386-1394.

[37]   Goel, V.-K., Kiapour, A., Faizan, A., Krishna, M. and Friesem, T. (2006) Finite Element Study of Matched Paired Posterior Disc Implant and Dynamic Stabilizer (360° Motion Preservation System). SAS Journal, 1, 55-62.

[38]   Tang, S. and Meng, X.Y. (2010) Does Disc Space Height of Fused Segment Affect Adjacent Degeneration in ALIF? A Finite Element Study. Journal of Turkish Neurosurgery, 3, 296-303.

[39]   Kim, K.-T., Lee, S.-H., Suk, K.-S., Lee, J.-H. and Jeong, B.-O. (2010) Biomechanical Changes of the Lumbar Segment after Total Disc Replacement: Charite®, Prodisc® and Maverick® Using Finite Element Model Study. Journal of Korean Neurosurgical Society, 47, 446-453.

[40]   Agarwal, A., Agarwal, A.-K. and Goel, V.-K. (2013) The Endplate Morphology Changes with Change in Biomechanical Environment Following Discectomy. International Journal of Clinical Medicine, 4, 8-17.

[41]   Zhong, Z.-C., Wei, S.-H., Wang, J.-P., Feng, C.-K., Chen, C.-S. and Yu, C.-H. (2006) Finite Element Analysis of the Lumbar Spine with a New Cage Using a Topology Optimization Method. Medical Engineering & Physics, 28, 90-98.

[42]   Sairyo, K., Goel, V.-K., Masuda, A., Vishnubhotla, S., Faizan, A., Biyani, A., et al. (2006) Three Dimensional Finite Element Analysis of the Lumbar Spine. European Spine Journal, 15, 923-929.

[43]   Goto, K., Tajima, N., Chosa, E., Totoribe, K., Kuroki, H., Arizumi, Y. and Arai, T. (2002) Mechanical Analysis of the Lumbar Vertebrae in a Three-Dimensional Finite Element Method Model in Which Intradiscal Pressure in the Nucleus Pulposus Was Used to Establish the Model. Journal of Orthopaedic Science, 7, 243-246.