IJOC  Vol.5 No.3 , September 2015
Low Environmental Load Process for the Beckmann Rearrangement of Cycloalkanone Oximes by Brønsted Acid Catalyst with Cobalt Salts
ABSTRACT
Beckmann rearrangements of oximes to lactams often require harsh conditions and/or the use of large amounts of acid catalyst. To reduce the amount of Bronsted acid required, and to avoid the formation of a large amount of undesirable byproducts under mild reaction conditions, a low environmental load process was developed. Beckmann rearrangements of cyclohexanone oxime and cyclooctanone oxime were achieved using a combination of a Bronsted acid and cobalt tetra-fluoroborate hexahydrate. Various Bronsted acid catalysts (10 - 20 mol%) were used to obtain the corresponding lactams in high yields at 80℃.

Cite this paper
Yamamoto, H. , Komeda, M. , Ozaki, A. , Sumimoto, M. , Hori, K. and Sugimoto, T. (2015) Low Environmental Load Process for the Beckmann Rearrangement of Cycloalkanone Oximes by Brønsted Acid Catalyst with Cobalt Salts. International Journal of Organic Chemistry, 5, 147-152. doi: 10.4236/ijoc.2015.53016.
References
[1]   Gawley, R.E. (2004) The Beckmann Reactions: Rearrangements, Elimination—Additions, Fragmentations, and Rearrangement—Cyclizations. Organic Reactions, 35, 1-420.
http://dx.doi.org/10.1002/0471264180.or035.01

[2]   Smith, M.B. and March, J. (2007) March's Advanced Organic Chemistry. 6th Edition, John Wiley & Sons, Inc., Hoboken, 1613-1616.

[3]   Kaur, N., Sharma, P. and Kishore, D. (2012) Application of Different Catalysts in Beckmann Rearrangement. Journal of Chemical and Pharmaceutical Research, 4, 1938-1946.

[4]   Zhang, J.S., Riaud, A., Wang, K., Lu, Y.C. and Luo, G.S. (2014) Beckmann Rearrangement of Cyclohexanone Oxime to ε-Caprolactam in a Modified Catalytic System of Trifluoroacetic Acid. Catalysis Letters, 144, 151-157.
http://dx.doi.org/10.1007/s10562-013-1114-3

[5]   Rancan, E., Aricò, F., Quartarone, G., Ronchin, L., Tundo, P. and Vavasori, A. (2014) Self-Catalyzed Direct Amidation of Ketones: A Sustainable Procedure for Acetaminophen Synthesis. Catalysis Communications, 54, 11-16.
http://dx.doi.org/10.1016/j.catcom.2014.05.007

[6]   Mao, D., Long, Z., Zhou, Y., Li, J., Wanga, X. and Wang J. (2014) Dual-Sulfonated Dipyridinium Phosphotungstate Catalyst for Liquid-Phase Beckmann Rearrangement of Cyclohexanone Oxime. RSC Advances, 4, 15635-15641.
http://dx.doi.org/10.1039/c4ra00552j

[7]   Opanasenko, M., Shamzhy, M., Lamac, M. and Cejka, J. (2013) The Effect of Substrate Size in the Beckmann Rearrangement: MOFs vs. Zeolites. Catalysis Today, 204, 94-100.
http://dx.doi.org/10.1016/j.cattod.2012.09.008

[8]   Vaschetto, E.G., Monti, G.A., Herrero, E.R., Casuscelli, S.G. and Eimer, G.A. (2013) Influence of the Synthesis Conditions on the Physicochemical Properties and Acidity of Al-MCM-41 as Catalysts for the Cyclohexanone Oxime Rearrangement. Applied Catalysis A General, 453, 391-402.
http://dx.doi.org/10.1016/j.apcata.2012.12.016

[9]   Zuidhof, N.T., de Croon, M.H.J.M., Schouten, J.C. and Tinge, J.T. (2013) Beckmann Rearrangement of Cyclohexanone Oxime in a Microreactor Setup with Internal Recirculation. Chemical Engineering & Technology, 36, 1387-1394. http://dx.doi.org/10.1002/ceat.201300088

[10]   Bellussi, G. and Perego, C. (2000) Industrial Catalytic Aspects of the Synthesis of Monomers for Nylon Production. CATTECH, 4, 4-16.
http://dx.doi.org/10.1023/A:1011905009608

[11]   An, N., Tian, B.-X., Pi, H.-J., Eriksson, L.A. and Deng, W.-P. (2013) Mechanistic Insight into Self-Propagation of Organo-Mediated Beckmann Rearrangement: A Combined Experimental and Computational Study. The Journal of Organic Chemistry, 78, 4297-4302.
http://dx.doi.org/10.1021/jo400278c

[12]   Maia, A., Albanese, D.C.M. and Landini, D. (2012) Cyanuric Chloride Catalyzed Beckmann Rearrangement of Ketoximes in Biodegradable Ionic Liquids. Tetrahedron, 68, 1947-1950.
http://dx.doi.org/10.1016/j.tet.2011.12.051

[13]   Hashimoto, M., Obora, Y., Sakaguchi, S. and Ishii, Y. (2008) Beckmann Rearrangement of Ketoximes to Lactams by Triphosphazene Catalyst. The Journal of Organic Chemistry, 73, 2894-2897.
http://dx.doi.org/10.1021/jo702277g

[14]   Shibamoto, A., Iwahama, T. and Nakano, T. (2008) PCT Int Appl No. 2008078642.

[15]   Furuya, Y., Ishihara, K. and Yamamoto, H. (2005) Cyanuric Chloride as a Mild and Active Beckmann Rearrangement Catalyst. Journal of the American Chemical Society, 127, 11240-11241.
http://dx.doi.org/10.1021/ja053441x

[16]   De Luca, L., Giacomelli, G. and Porcheddu, A. (2002) Beckmann Rearrangement of Oximes under Very Mild Conditions. The Journal of Organic Chemistry, 67, 6272-6274.
http://dx.doi.org/10.1021/jo025960d

[17]   Kim, J., Park, W. and Ryoo, R. (2011) Surfactant-Directed Zeolite Nanosheets: A High-Performance Catalyst for Gas-Phase Beckmann Rearrangement. ACS Catalysis, 1, 337-341.
http://dx.doi.org/10.1021/cs100160g

[18]   Komeda, M., Ozaki, A., Hayashi, K., Sumimoto, M., Hori, K., Sugimoto, T. and Yamamoto, H. (2015) The Effective Catalyst (Cobalt Salt/Lewis Acid) for Beckmann Rearrangement of Cycloalkanone Oximes to Lactams under Mild Conditions. International Journal of Organic Chemistry, 5, 57-62.
http://dx.doi.org/10.4236/ijoc.2015.52007

[19]   Hori, K., Sumimoto, M. and Yamamoto, H. (2015) Unpublished Data.

 
 
Top