[1] Ramaiah, G.K. and Kumar, V. (1973) Natural Frequencies of Polar Orthotropic Annular Plates. Journal of Sound and Vibration, 26, 517-531.
http://dx.doi.org/10.1016/S0022-460X(73)80217-2
[2] Dyka, C.T. and Carney, J.F. (1979) Vibration and Stability of Spanning Polar Orthotropic Annular Plates Reinforced with Edge Beams. Journal of Sound and Vibration, 6, 223-231.
http://dx.doi.org/10.1016/0022-460X(79)90647-3
[3] Gorman, D.G. (1982) Natural Frequencies of Polar Orthotropic Uniform Annular Plates. Journal of Sound and Vibration, 80, 145-154.
http://dx.doi.org/10.1016/0022-460X(82)90397-2
[4] Gorman, D.G. (1983) Natural Frequencies of Polar Orthotropic Variable Thickness Annular Plates. Journal of Sound and Vibration, 86, 47-60.
http://dx.doi.org/10.1016/0022-460X(83)90942-2
[5] Gunaratnam, D.G. and Bhattacharya, A.P. (1989) Transverse Vibration and Stability of Polar Orthotropic Circular Plates: High Level Relationship. Journal of Sound and Vibration, 132, 383-392.
http://dx.doi.org/10.1016/0022-460X(83)90942-2
[6] Gupta, U.S., Lal, R. and Jain, S.K. (1991) Buckling and Vibrations of Polar Orthotropic Circular Plates of Linearly Varying Thickness Resting on an Elastic Foundation. Journal of Sound and Vibration, 147, 423-434.
http://dx.doi.org/10.1016/0022-460X(91)90491-2
[7] Gupta, U.S., Lal, R. and Jain, S.K. (1993) Vibration and Buckling of Parabolically Tapered Polar Orthotropic Plates on Elastic Foundation. Indian Journal of Pure and Applied Mathematics, 24, 607-631.
[8] Gupta, U.S., Lal, R. and Sagar, R. (1994) Effect of Elastic Foundation on Axisymmetric Vibrations of Polar Orthotropic Mindlin Circular Plates. Indian Journal of Pure and Applied Mathematics, 25, 1317-1326.
[9] Gupta, U.S., Jain, S.K. and Jain, D. (1995) Method of Collocation by Derivatives in the Study of Axisymmeric Vibration of Circular Plates. Computer and Structures, 57, 841-845.
http://dx.doi.org/10.1016/0045-7949(95)00085-U
[10] Ansari, A.H. (2000) Vibration of Plates of Variable Thickness. Ph.D. Thesis, University of Roorkee, Roorkee.
[11] Gupta, A.P. and Bhardwaj, N. (2005) Free Vibration of Polar Orthotropic Circular Plates of Quadratically Varying Thickness Resting on Elastic Foundation. Applied Mathematical Modelling, 29, 137-157.
http://dx.doi.org/10.1016/j.apm.2004.07.010
[12] Gupta, U.S., Ansari, A.H. and Sharma, S. (2006) Buckling and Vibration of Polar Orthotropic Circular Plate Resting on Winkler Foundation. Journal of Sound and Vibration, 297, 457-476.
http://dx.doi.org/10.1016/j.jsv.2006.01.073
[13] Gupta, U.S., Lal, R. and Sharma, S. (2006) Thermal Effect on Axisymmetric Vibrations of Non-Uniform Polar Orthotropic Circular Plates with Elastically Restrained Edge. Proceedings of the 2nd International Congress on Computational Mechanics and Simulation (ICCMS-06), IIT Guwahati, 8-10 December 2006.
[14] Gupta, U.S., Lal, R. and Sharma, S. (2006) Vibration Analysis of Non-Homogeneous Circular Plate of Non-Linear Thickness Variation by Differential Quadrature Method. Journal of Sound and Vibration, 298, 892-906.
http://dx.doi.org/10.1016/j.jsv.2006.05.030
[15] Gupta, U.S., Lal, R. and Sharma, S. (2007) Vibration of Non-Homogeneous Circular Mindlin Plates with Variable Thickness. Journal of Sound and Vibration, 302, 1-17.
http://dx.doi.org/10.1016/j.jsv.2006.07.005
[16] Sharma, S., Gupta, U.S. and Lal, R. (2010) Effect of Pasternak Foundation on Axisymmetric Vibration of Polar Orthotropic Annular Plates of Varying Thickness. Journal of Vibration and Acoustics, 132, Article ID: 041001.
[17] Sharma, S., Srivastava, S. and Lal, R. (2011) Free Vibration Analysis of Circular Plate of Variable Thickness Resting on Pasternak Foundation. Journal of International Academy of Physical Sciences, 15, 1-13.
[18] Sharma, S., Lal, R. and Srivastava, S. (2012) Effect of Pasternak Foundation on Axisymmetric Vibration of Polar Orthotropic Non-Homogeneous Circular Plate of Variable Thickness. International Journal of Computational Mathematics and Numerical Simulation, 5, 151-163.
[19] Bahmyari, E. and Khedmati, M.R. (2013) Vibration Analysis of Non-Homogeneous Moderately Thick Plates with Point Supports Resting on Pasternak Elastic Foundation Using Element Free Galerkin Method. Engineering Analysis with Boundary Elements, 37, 1212-1238.
http://dx.doi.org/10.1016/j.enganabound.2013.05.003
[20] Sayyad, A.S. and Ghugal, Y.M. (2015) On the Free Vibration Analysis of Laminated Composite and Sandwich Plates: A Review of Recent Literature with Some Numerical Results. Composite Structures, 129, 177-201.
http://dx.doi.org/10.1016/j.compstruct.2015.04.007
[21] Eftekhari, S.A. and Jafari, A.A. (2013) A Simple and Accurate Ritz Formulation for Free Vibration of Thick Rectangular and Skew Plates with General Boundary Conditions. Acta Mechanica, 224, 193-209.
http://dx.doi.org/10.1007/s00707-012-0737-6
[22] Leissa, A.W. (1969) Vibration of Plates. NASA Report No. SP-160.
[23] Sharma, S. (2006) Free Vibration Studies on Non-Homogeneous Circular and Annular Plates. Ph.D. Thesis, I.I.T. Roorkee, Roorkee.