[1] North, R.A. (2002) Molecular physiology of P2X receptors. Physiological Reviews, 82 1013-1067.
http://dx.doi.org/10.1152/physrev.00015.2002
[2] Cockayne, D.A., Dunn, P.M., Zhong, Y., Rong, W., Hamilton, S.G., Knight, G.E., Ruan, H.Z., Ma, B., Yip, P., Nunn, P., McMahon, S.B., Burnstock, G. and Ford, A.P. (2005) P2X2 Knockout Mice and P2X2/P2X3 Double Knockout Mice Reveal a Role for the P2X2 Receptor Subunit in Mediating Multiple Sensory Effects of ATP. The Journal of Physiology, 567, 621-639.
http://dx.doi.org/10.1113/jphysiol.2005.088435
[3] Burnstock, G. (2007) Physiology and Pathophysiology of Purinergic Neurotransmission. Physiological Reviews, 87, 659-797.
http://dx.doi.org/10.1152/physrev.00043.2006
[4] Coutinho-Silva, R., Knight, G.E. and Burnstock, G. (2005) Impairment of the Splenic Immune System in P2X2/P2X3 Knockout Mice. Immunobiology, 209, 661-668.
http://dx.doi.org/10.1016/j.imbio.2004.09.007
[5] Huang, L.C., Greenwood, D., Thorne, P.R. and Housley, G.D. (2005) Developmental Regulation of Neuron-Specific P2X3 Receptor Expression in the Rat Cochlea. Journal of Comparative Neurology, 484, 133-143.
http://dx.doi.org/10.1002/cne.20442
[6] Torres, G.E., Egan, T.M. and Voigt, M.M. (1999) Hetero-Oligomeric Assembly of P2X Receptor Subunits. Specificities Exist with Regard to Possible Partners. The Journal of Biological Chemistry, 274, 6653-6659.
http://dx.doi.org/10.1074/jbc.274.10.6653
[7] Valera, S., Hussy, N., Evans, R.J., Adami, N., North, R.A., Surprenant, A. and Buell, G. (1994) A New Class of Ligand-Gated Ion Channel Defined by P2X Receptor for Extracellular ATP. Nature, 371, 516-519.
http://dx.doi.org/10.1038/371516a0
[8] Surprenant, A., Buell, G. and North, R.A. (1995) P2X Receptors Bring New Structure to Ligand-Gated Ion Channels. Trends in Neurosciences, 18, 224-229.
http://dx.doi.org/10.1016/0166-2236(95)93907-F
[9] Xiang, Z. and Burnstock, G. (2004) P2X2 and P2X3 Purinoceptors in the Rat Enteric Nervous System. Histochemistry and Cell Biology, 121, 169-179.
http://dx.doi.org/10.1007/s00418-004-0620-1
[10] Chen, C.C., Akopian, A.N., Sivilotti, L., Colquhoun, D., Burnstock, G. and Wood, J.N. (1995) A P2X Purinoceptor Expressed by a Subset of Sensory Neurons. Nature, 377, 428-431.
http://dx.doi.org/10.1038/377428a0
[11] Garcia-Guzman, M., Stuhmer, W. and Soto, F. (1997) Molecular Characterization and Pharmacological Properties of the Human P2X3 Purinoceptor. Molecular Brain Research, 47, 59-66.
http://dx.doi.org/10.1016/S0169-328X(97)00036-3
[12] Ren, J., Bian, X., DeVries, M., Schnegelsberg, B., Cockayne, D.A., Ford, A.P. and Galligan, J.J. (2003) P2X2 Subunits Contribute to Fast Synaptic Excitation in Myenteric Neurons of the Mouse Small Intestine. The Journal of Physiology, 552, 809-821.
http://dx.doi.org/10.1113/jphysiol.2003.047944
[13] Ruan, H.Z. and Burnstock, G. (2005) The Distribution of P2X5 Purinergic Receptors in the Enteric Nervous System of Mouse. Cell and Tissue Research, 319, 191-200.
http://dx.doi.org/10.1007/s00441-004-1002-7
[14] Fountain, S.J. and Burnstock, G. (2009) An Evolutionary History of P2X Receptors. Purinergic Signalling, 5, 269-272.
http://dx.doi.org/10.1007/s11302-008-9127-x
[15] Burnstock, G. and Verkhratsky, A. (2009) Evolutionary Origins of the Purinergic Signalling System. Acta Physiologica, 195, 415-447.
http://dx.doi.org/10.1111/j.1748-1716.2009.01957.x
[16] Trams, E.G. (1981) On the Evolution of Neurochemical Transmission. Differentiation, 19, 125-133.
http://dx.doi.org/10.1111/j.1432-0436.1981.tb01140.x
[17] Bavan, S., Straub, V.A., Blaxter, M.L. and Ennion, S.J. (2009) A P2X Receptor from the Tardigrade Species Hypsibius dujardini with Fast Kinetics and Sensitivity to Zinc and Copper. BMC Evolutionary Biology, 9, 17.
http://dx.doi.org/10.1186/1471-2148-9-17
[18] Agboh, K.C., Webb, T.E., Evans, R.J. and Ennion, S.J. (2004) Functional Characterization of a P2X Receptor from Schistosoma mansoni. The Journal of Biological Chemistry, 279, 41650-41657.
http://dx.doi.org/10.1074/jbc.M408203200
[19] Muller, C.E. (2015) Medicinal Chemistry of P2X Receptors: Allosteric Modulators. Current Medicinal Chemistry, 22, 929-941.
http://dx.doi.org/10.2174/0929867322666141210155610
[20] Rodriguez-Kessler, M., Delgado-Sanchez, P., Rodriguez-Kessler, G.T., Moriguchi, T. and Jimenez-Bremont, J.F. (2010) Genomic Organization of Plant Aminopropyl Transferases. Plant Physiology and Biochemistry, 48, 574-590.
http://dx.doi.org/10.1016/j.plaphy.2010.03.004
[21] Li, M., Chang, T.H., Silberberg, S.D. and Swartz, K.J. (2008) Gating the Pore of P2X Receptor Channels. Nature Neuroscience, 11, 883-887.
http://dx.doi.org/10.1038/nn.2151
[22] Castillo-Davis, C.I., Mekhedov, S.L., Hartl, D.L., Koonin, E.V. and Kondrashov, F.A. (2002) Selection for Short Introns in Highly Expressed Genes. Nature Genetics, 31, 415-418. http://dx.doi.org/10.1038/ng940
[23] Eisenberg, E. and Levanon, E.Y. (2003) Human Housekeeping Genes Are Compact. Trends in Genetics, 19, 362-365.
http://dx.doi.org/10.1016/S0168-9525(03)00140-9
[24] Rao, Y.S., Wang, Z.F., Chai, X.W., Wu, G.Z., Zhou, M., Nie, Q.H. and Zhang, X.Q. (2010) Selection for the Compactness of Highly Expressed Genes in Gallus gallus. Biology Direct, 5, 35.
http://dx.doi.org/10.1186/1745-6150-5-35
[25] Linan-Rico, A., Jaramillo-Polanco, J., Espinosa-Luna, R., Jimenez-Bremont, J.F., Linan-Rico, L., Montano, L.M. and Barajas-Lopez, C. (2012) Retention of a New-Defined Intron Changes Pharmacology and Kinetics of the Full-Length P2X2 Receptor Found in Myenteric Neurons of the Guinea Pig. Neuropharmacology, 63, 394-404.
http://dx.doi.org/10.1016/j.neuropharm.2012.04.002
[26] Brosenitsch, T.A., Adachi, T., Lipski, J., Housley, G.D. and Funk, G.D. (2005) Developmental Downregulation of P2X3 Receptors in Motoneurons of the Compact Formation of the Nucleus Ambiguus. European Journal of Neuroscience, 22, 809-824.
http://dx.doi.org/10.1111/j.1460-9568.2005.04261.x
[27] Ruan, H.Z., Moules, E. and Burnstock, G. (2004) Changes in P2X3 Purinoceptors in Sensory Ganglia of the Mouse during Embryonic and Postnatal Development. Histochemistry and Cell Biology, 122, 539-551.
http://dx.doi.org/10.1007/s00418-004-0714-9
[28] Xiang, Z. and Burnstock, G. (2004) Development of Nerves Expressing P2X3 Receptors in the Myenteric Plexus of Rat Stomach. Histochemistry and Cell Biology, 122, 111-119.
http://dx.doi.org/10.1007/s00418-004-0680-2
[29] Loera-Valencia, R., Jimenez-Vargas, N.N., Villalobos, E.C., Juarez, E.H., Lomas-Ramos, T.L., Espinosa-Luna, R., Montano, L.M., Huizinga, J.D. and Barajas-Lopez, C. (2014) Expression of P2X3 and P2X5 Myenteric Receptors Varies during the Intestinal Postnatal Development in the Guinea Pig. Cellular and Molecular Neurobiology, 34, 727-736.
http://dx.doi.org/10.1007/s10571-014-0055-8
[30] Majewski, J. and Ott, J. (2002) Distribution and Characterization of Regulatory Elements in the Human Genome. Genome Research, 12, 1827-1836.
http://dx.doi.org/10.1101/gr.606402
[31] Kalari, K.R., Casavant, M., Bair, T.B., Keen, H.L., Comeron, J.M., Casavant, T.L. and Scheetz, T.E. (2006) First Exons and Introns—A Survey of GC Content and Gene Structure in the Human Genome. In Silico Biology, 6, 237-242.
[32] Zhu, L., Zhang, Y., Zhang, W., Yang, S., Chen, J.Q. and Tian, D. (2009) Patterns of Exon-Intron Architecture Variation of Genes in Eukaryotic Genomes. BMC Genomics, 10, 47.
http://dx.doi.org/10.1186/1471-2164-10-47
[33] Egan, T.M., Cox, J.A. and Voigt, M.M. (2000) Molecular Cloning and Functional Characterization of the Zebrafish ATP-Gated Ionotropic Receptor P2X3 Subunit. FEBS Letters, 475, 287-290.
http://dx.doi.org/10.1016/S0014-5793(00)01685-9
[34] Diaz-Hernandez, M., Cox, J.A., Migita, K., Haines, W., Egan, T.M. and Voigt, M.M. (2002) Cloning and Characterization of Two Novel Zebrafish P2X Receptor Subunits. Biochemical and Biophysical Research Communications, 295, 849-853.
http://dx.doi.org/10.1016/S0006-291X(02)00760-X
[35] Kucenas, S., Li, Z., Cox, J.A., Egan, T.M. and Voigt, M.M. (2003) Molecular Characterization of the Zebrafish P2X Receptor Subunit Gene Family. Neuroscience, 121, 935-945.
http://dx.doi.org/10.1016/S0306-4522(03)00566-9
[36] Babenko, V.N., Rogozin, I.B., Mekhedov, S.L. and Koonin, E.V. (2004) Prevalence of Intron Gain Over Intron Loss in the Evolution of Paralogous Gene Families. Nucleic Acids Research, 32, 3724-3733.
http://dx.doi.org/10.1093/nar/gkh686
[37] Carmel, L., Rogozin, I.B., Wolf, Y.I. and Koonin, E.V. (2007) Patterns of Intron Gain and Conservation in Eukaryotic Genes. BMC Evolutionary Biology, 7, 192.
http://dx.doi.org/10.1186/1471-2148-7-192
[38] Rogozin, I.B., Wolf, Y.I., Sorokin, A.V., Mirkin, B.G. and Koonin, E.V. (2003) Remarkable Interkingdom Conservation of Intron Positions and Massive, Lineage-Specific Intron Loss and Gain in Eukaryotic Evolution. Current Biology, 13, 1512-1517.
http://dx.doi.org/10.1016/S0960-9822(03)00558-X
[39] Okamura, Y., Nishino, A., Murata, Y., Nakajo, K., Iwasaki, H., Ohtsuka, Y., Tanaka-Kunishima, M., Takahashi, N., Hara, Y., Yoshida, T., Nishida, M., Okado, H., Watari, H., Meinertzhagen, I.A., Satoh, N., Takahashi, K., Satou, Y., Okada, Y. and Mori, Y. (2005) Comprehensive Analysis of the Ascidian Genome Reveals Novel Insights into the Molecular Evolution of Ion Channel Genes. Physiological Genomics, 22, 269-282.
http://dx.doi.org/10.1152/physiolgenomics.00229.2004
[40] Amores, A., Force, A., Yan, Y.L., Joly, L., Amemiya, C., Fritz, A., Ho, R.K., Langeland, J., Prince, V., Wang, Y.L., Westerfield, M., Ekker, M. and Postlethwait, J.H. (1998) Zebrafish Hox Clusters and Vertebrate Genome Evolution. Science, 282, 1711-1714.
http://dx.doi.org/10.1126/science.282.5394.1711
[41] Postlethwait, J.H., Yan, Y.L., Gates, M.A., Horne, S., Amores, A., Brownlie, A., Donovan, A., Egan, E.S., Force, A., Gong, Z., Goutel, C., Fritz, A., Kelsh, R., Knapik, E., Liao, E., Paw, B., Ransom, D., Singer, A., Thomson, M., Abduljabbar, T.S., Yelick, P., Beier, D., Joly, J.S., Larhammar, D., Rosa, F., Westerfield, M., Zon, L.I., Johnson, S.L. and Talbot, W.S. (1998) Vertebrate Genome Evolution and the Zebrafish Gene Map. Nature Genetics, 18, 345-349.
http://dx.doi.org/10.1038/ng0498-345
[42] Woods, I.G., Kelly, P.D., Chu, F., Ngo-Hazelett, P., Yan, Y.L., Huang, H., Postlethwait, J.H. and Talbot, W.S. (2000) A Comparative Map of the Zebrafish Genome. Genome Research, 10, 1903-1914.
http://dx.doi.org/10.1101/gr.10.12.1903
[43] Taylor, J.S., Braasch, I., Frickey, T., Meyer, A. and Van de Peer, Y. (2003) Genome Duplication, a Trait Shared by 22000 Species of Ray-Finned Fish. Genome Research, 13, 382-390.
http://dx.doi.org/10.1101/gr.640303
[44] Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., Kelly, P.D., Chu, F., Postlethwait, J.H. and Talbot, W.S. (2005) The Zebrafish Gene Map Defines Ancestral Vertebrate Chromosomes. Genome Research, 15, 1307-1314.
http://dx.doi.org/10.1101/gr.4134305
[45] Ruvinsky, A. and Watson, C. (2007) Intron Phase Patterns in Genes: Preservation and Evolutionary Changes. The Open Evolution Journal, 1, 1-14.
http://dx.doi.org/10.2174/1874404400701010001
[46] Fedorov, A., Suboch, G., Bujakov, M. and Fedorova, L. (1992) Analysis of Nonuniformity in Intron Phase Distribution. Nucleic Acids Research, 20, 2553-2557.
http://dx.doi.org/10.1093/nar/20.10.2553
[47] Artamonova, I.I. and Gelfand, M.S. (2007) Comparative Genomics and Evolution of Alternative Splicing: The Pessimists’ Science. Chemical Reviews, 107, 3407-3430.
http://dx.doi.org/10.1021/cr068304c
[48] Ruvinsky, A. and Ward, W. (2006) A Gradient in the Distribution of Introns in Eukaryotic Genes. Journal of Molecular Evolution, 63, 136-141.
http://dx.doi.org/10.1007/s00239-005-0261-6
[49] Fedorov, A., Roy, S., Fedorova, L. and Gilbert, W. (2003) Mystery of Intron Gain. Genome Research, 13, 2236-2241.
http://dx.doi.org/10.1101/gr.1029803
[50] Roy, S.W. (2004) The Origin of Recent Introns: Transposons? Genome Biology, 5, 251.
http://dx.doi.org/10.1186/gb-2004-5-12-251
[51] Ogino, K., Tsuneki, K. and Furuya, H. (2010) Unique Genome of Dicyemid Mesozoan: Highly Shortened Spliceosomal Introns in Conservative Exon/Intron Structure. Gene, 449, 70-76.
http://dx.doi.org/10.1016/j.gene.2009.09.002
[52] Collins, L. and Penny, D. (2006) Investigating the Intron Recognition Mechanism in Eukaryotes. Molecular Biology and Evolution, 23, 901-910.
http://dx.doi.org/10.1093/molbev/msj084
[53] Bo, X., Schoepfer, R. and Burnstock, G. (2000) Molecular Cloning and Characterization of a Novel ATP P2X Receptor Subtype from Embryonic Chick Skeletal Muscle. The Journal of Biological Chemistry, 275, 14401-14407.
http://dx.doi.org/10.1074/jbc.275.19.14401
[54] Fountain, S.J., Cao, L., Young, M.T. and North, R.A. (2008) Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri. The Journal of Biological Chemistry, 283, 15122-15126.
http://dx.doi.org/10.1074/jbc.M801512200
[55] Fountain, S.J., Parkinson, K., Young, M.T., Cao, L., Thompson, C.R. and North, R.A. (2007) An Intracellular P2X Receptor Required for Osmoregulation in Dictyostelium discoideum. Nature, 448, 200-203.
http://dx.doi.org/10.1038/nature05926
[56] Dubyak, G.R. (2007) Go It Alone No More—P2X7 Joins the Society of Heteromeric ATP-Gated Receptor Channels. Molecular Pharmacology, 72, 1402-1405.
http://dx.doi.org/10.1124/mol.107.042077
[57] Bernier, L.P. (2012) Purinergic Regulation of Inflammasome Activation after Central Nervous System Injury. The Journal of General Physiology, 140, 571-575.
http://dx.doi.org/10.1085/jgp.201210875
[58] Kaan, T.K., Yip, P.K., Patel, S., Davies, M., Marchand, F., Cockayne, D.A., Nunn, P.A., Dickenson, A.H., Ford, A.P., Zhong, Y., Malcangio, M. and McMahon, S.B. (2010) Systemic Blockade of P2X3 and P2X2/3 Receptors Attenuates Bone Cancer Pain Behaviour in Rats. Brain, 133, 2549-2564. http://dx.doi.org/10.1093/brain/awq194
[59] Sperlagh, B. and Illes, P. (2014) P2X7 Receptor: An Emerging Target in Central Nervous System Diseases. Trends in Pharmacological Sciences, 35, 537-547.
http://dx.doi.org/10.1016/j.tips.2014.08.002
[60] Tsuchihara, T., Ogata, S., Nemoto, K., Okabayashi, T., Nakanishi, K., Kato, N., Morishita, R., Kaneda, Y., Uenoyama, M., Suzuki, S., Amako, M., Kawai, T. and Arino, H. (2009) Nonviral Retrograde Gene Transfer of Human Hepatocyte Growth Factor Improves Neuropathic Pain-Related Phenomena in Rats. Molecular Therapy, 17, 42-50.
http://dx.doi.org/10.1038/mt.2008.214